搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分辨率调频连续波激光绝对测距研究

时光 张福民 曲兴华 孟祥松

引用本文:
Citation:

高分辨率调频连续波激光绝对测距研究

时光, 张福民, 曲兴华, 孟祥松

Absolute distance measurement by high resolution frequency modulated continuous wave laser

Shi Guang, Zhang Fu-Min, Qu Xing-Hua, Meng Xiang-Song
PDF
导出引用
  • 大空间精密测量在重大装备制造、空间科技、国防工业等方面发挥着重要作用,激光高精度绝对长度测量是大空间精密测量领域的重要研究课题. 调频连续波激光测距是近年来激光绝对测距研究的热点,它克服了脉冲法测量分辨率低和相位法激光测距存在2π缠绕模糊度问题的缺点,有着测量精度高、量程大的优点. 本文研究了调频连续波激光测距的原理,分析了影响其测距分辨率的主要原因,证明了利用等光频间隔采样来抑制激光调制非线性对测距结果影响的可行性. 该方法可以提高测距分辨率,且系统构成简单、实用性强. 搭建了光纤调频连续波激光测距系统,并加入了辅助干涉光路对测量信号进行等光频间隔采样. 利用该系统进行了测距分辨率实验,实验结果表明,本系统测量分辨率可以达到50 μm,测量范围达到了10 m.
    Large-scale high-accuracy measurement plays an important role in many applications, such as large-scale equipment manufacturing, space technology and national defense industry. High-accuracy absolute distance measurement by laser is an important research topic in the field of large-scale high-accuracy measurement. And frequency modulated continuous wave (FMCW) laser ranging is a hot point of research nowadays. Because this method is better than pulsed time-of-flight method in measurement resolution, and the problem of ambiguity in measurement, which is the main disadvantage of phase-related method, does not exist. In this paper, the principle of FMCW laser ranging and the main factors reducing the measurement resolution are analyzed. In order to improve the ranging resolution, the method using an auxiliary interferometer to sample the signal in equal intervals of optical frequency is employed. A dual interferometer FMCW laser ranging system is designed and the experiments are carried out. The experimental results show that the measurement resolution is 50 μm at a distance of 10 m.
    • 基金项目: 国家自然科学基金(批准号:51327006,51105274)和高等学校博士学科点专项科研基金(批准号:20120032130002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51327006, 51105274), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032130002).
    [1]

    Liu Z X, Zhu J G, Yang L H, Liu H Q, Wu J, Xue B 2013 Meas. Sci. Technol. 24 105004

    [2]

    Swinkels B L, Bhattacharya N, Braat J J M 2005 Opt. Lett. 30 2242

    [3]

    Cabral A, Rebordão J 2007 Opt. Eng. 46 073602

    [4]

    Xing S J, Zhang F M, Cao S Y, Wang G W, Qu X H 2013 Acta Phys. Sin. 62 170603(in Chinese)[邢书剑, 张福民, 曹士英, 王高文, 曲兴华 2013 物理学报 62 170603]

    [5]

    Qin P, Chen W, Song Y J, Hu M L, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 240601(in Chinese)[秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月 2012 物理学报 61 240601]

    [6]

    Wang G C, Yan S H, Yang J, Lin C B, Yang D X, Zou P F 2013 Acta Phys. Sin. 62 070601(in Chinese)[王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞 2013 物理学报 62 070601]

    [7]

    Li Z D, Jiang Y S, Sang F, Wang L C, Deng S G, Xin Y, Guo J P 2011 Acta Opt. Sin. 31 0314001(in Chinese)[李志栋, 江月松, 桑峰, 王林春, 邓士光, 辛遥, 郭泾平 2011 光学学报 31 0314001]

    [8]

    Zheng J 2004 Appl. Opt. 43 4189

    [9]

    Satyan N, Vasilyev A, Rakuljic G, Leyva V, Yariv A 2009 Opt. Express 17 15991

    [10]

    Roos P A, Reibel R R, Berg T, Kaylor B, Barber Z W, Babbitt W R 2010 Opt. Lett. 34 3692

    [11]

    Iiyama K, Matsui S, Kobayashi T, Maruyama T 2011 IEEE Photon. Technol. Lett. 23 703

    [12]

    Baumann E, Giorgetta F R, Coddington I, Sinclair L C, Knabe K, Swann W C, Newbury N R 2013 Opt. Lett. 38 2026

    [13]

    Lin B, Liang S, Zhang C X, Lin W T, Li Q, Zhong X, Li L J 2010 Chin. Phys. B 19 124217

    [14]

    Hu Y M, Yang W L, Xiao X, Feng M, Li C H 2014 Chin. Phys. B 23 034205

  • [1]

    Liu Z X, Zhu J G, Yang L H, Liu H Q, Wu J, Xue B 2013 Meas. Sci. Technol. 24 105004

    [2]

    Swinkels B L, Bhattacharya N, Braat J J M 2005 Opt. Lett. 30 2242

    [3]

    Cabral A, Rebordão J 2007 Opt. Eng. 46 073602

    [4]

    Xing S J, Zhang F M, Cao S Y, Wang G W, Qu X H 2013 Acta Phys. Sin. 62 170603(in Chinese)[邢书剑, 张福民, 曹士英, 王高文, 曲兴华 2013 物理学报 62 170603]

    [5]

    Qin P, Chen W, Song Y J, Hu M L, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 240601(in Chinese)[秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月 2012 物理学报 61 240601]

    [6]

    Wang G C, Yan S H, Yang J, Lin C B, Yang D X, Zou P F 2013 Acta Phys. Sin. 62 070601(in Chinese)[王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞 2013 物理学报 62 070601]

    [7]

    Li Z D, Jiang Y S, Sang F, Wang L C, Deng S G, Xin Y, Guo J P 2011 Acta Opt. Sin. 31 0314001(in Chinese)[李志栋, 江月松, 桑峰, 王林春, 邓士光, 辛遥, 郭泾平 2011 光学学报 31 0314001]

    [8]

    Zheng J 2004 Appl. Opt. 43 4189

    [9]

    Satyan N, Vasilyev A, Rakuljic G, Leyva V, Yariv A 2009 Opt. Express 17 15991

    [10]

    Roos P A, Reibel R R, Berg T, Kaylor B, Barber Z W, Babbitt W R 2010 Opt. Lett. 34 3692

    [11]

    Iiyama K, Matsui S, Kobayashi T, Maruyama T 2011 IEEE Photon. Technol. Lett. 23 703

    [12]

    Baumann E, Giorgetta F R, Coddington I, Sinclair L C, Knabe K, Swann W C, Newbury N R 2013 Opt. Lett. 38 2026

    [13]

    Lin B, Liang S, Zhang C X, Lin W T, Li Q, Zhong X, Li L J 2010 Chin. Phys. B 19 124217

    [14]

    Hu Y M, Yang W L, Xiao X, Feng M, Li C H 2014 Chin. Phys. B 23 034205

  • [1] 梁旭, 林嘉睿, 吴腾飞, 赵晖, 邾继贵. 重复频率倍增光频梳时域互相关绝对测距. 物理学报, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [2] 徐昕阳, 赵海涵, 钱治文, 刘超, 翟京生, 吴翰钟. 动态啁啾脉冲干涉的快速绝对距离测量. 物理学报, 2021, 70(22): 220601. doi: 10.7498/aps.70.20202149
    [3] 王国超, 李星辉, 颜树华, 谭立龙, 管文良. 基于飞秒光梳多路同步锁相的多波长干涉实时绝对测距及其非模糊度量程分析. 物理学报, 2021, 70(4): 040601. doi: 10.7498/aps.70.20201225
    [4] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双. 双光梳非线性异步光学采样测距中关键参数的数值分析. 物理学报, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [5] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法. 物理学报, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [6] 伍洲, 张文喜, 相里斌, 李杨, 孔新新. 频差偏差对全视场外差测量精度的影响. 物理学报, 2018, 67(2): 020601. doi: 10.7498/aps.67.20171837
    [7] 彭博, 曲兴华, 张福民, 张天宇, 张铁犁, 刘晓旭, 谢阳. 飞秒脉冲非对称互相关绝对测距. 物理学报, 2018, 67(21): 210601. doi: 10.7498/aps.67.20181274
    [8] 潘浩, 曲兴华, 史春钊, 李雅婷, 张福民. 激光调频连续波测距的精度评定方法研究. 物理学报, 2018, 67(9): 090201. doi: 10.7498/aps.67.20180142
    [9] 廖磊, 易旺民, 杨再华, 吴冠豪. 基于合成波长法的飞秒激光外差干涉测距方法. 物理学报, 2016, 65(14): 140601. doi: 10.7498/aps.65.140601
    [10] 刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华. 光学频率梳啁啾干涉实现绝对距离测量. 物理学报, 2016, 65(2): 020601. doi: 10.7498/aps.65.020601
    [11] 吴翰钟, 曹士英, 张福民, 曲兴华. 光学频率梳基于光谱干涉实现绝对距离测量. 物理学报, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [12] 孟祥松, 张福民, 曲兴华. 基于重采样技术的调频连续波激光绝对测距高精度及快速测量方法研究. 物理学报, 2015, 64(23): 230601. doi: 10.7498/aps.64.230601
    [13] 吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华. 一种光学频率梳绝对测距的新方法. 物理学报, 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [14] 邢书剑, 张福民, 曹士英, 王高文, 曲兴华. 飞秒光频梳的任意长绝对测距. 物理学报, 2013, 62(17): 170603. doi: 10.7498/aps.62.170603
    [15] 秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月. 基于飞秒激光平衡光学互相关的任意长绝对距离测量. 物理学报, 2012, 61(24): 240601. doi: 10.7498/aps.61.240601
    [16] 彭京思, 彭虎. 一种适用于超声多普勒血流速度测量的混沌调频连续波的研究. 物理学报, 2012, 61(24): 248701. doi: 10.7498/aps.61.248701
    [17] 张丽琼, 李岩, 朱敏昊, 张继涛. 法-珀干涉绝对距离测量中的声光移频器双通道配置方法. 物理学报, 2012, 61(18): 180701. doi: 10.7498/aps.61.180701
    [18] 张宏超, 陆建, 倪晓武. 干涉法诊断由纳秒激光诱导产生的大气等离子体的电子密度. 物理学报, 2009, 58(6): 4034-4040. doi: 10.7498/aps.58.4034
    [19] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量. 物理学报, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [20] 张彦鹏, 甘琛利, 朱京平, 唐天同, 傅盘铭. 利用相位共轭极化拍频光谱术测量原子能级差与激光绝对频率. 物理学报, 1999, 48(9): 1667-1675. doi: 10.7498/aps.48.1667
计量
  • 文章访问数:  6720
  • PDF下载量:  707
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-01
  • 修回日期:  2014-04-17
  • 刊出日期:  2014-09-05

/

返回文章
返回