搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面冲击下铜的拉伸应变率相关特性研究

彭辉 李平 裴晓阳 贺红亮 程和平 祁美兰

引用本文:
Citation:

平面冲击下铜的拉伸应变率相关特性研究

彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰

Rate-dependent characteristics of copper under plate impact

Peng Hui, Li Ping, Pei Xiao-Yang, He Hong-Liang, Cheng He-Ping, Qi Mei-Lan
PDF
导出引用
  • 本文对冲击加载下高纯无氧铜的拉伸应变率相关特性进行了实验研究. 实验中利用磁测速系统测试撞击前飞片速度,利用光纤位移仪––多普勒探针系统测试样品自由面粒子速度剖面. 对自由面速度剖面的特征参量进行计算分析,结果表明:铜样品的层裂强度随着拉伸应变率的增加而增加,对比发现层裂强度不仅受加载条件的影响,同时受到材料本身微细观结构影响;同时随着拉伸应变率的增加,自由面速度的回跳斜率呈现出先缓慢增加后迅速增加的临界特性;最后,通过层裂样品中波系相互作用,给出了自由面速度回跳过程中的振荡特征随着拉伸应变率增加而逐渐消失的物理过程.
    In this paper, the rate-dependent characteristics of oxygen-free high-purity copper (OFHC) under plate-impact loading is investigated experimentally. The velocity of flyers is measured by magnetic measurement system, and the free surface velocity of targets is measured by Doppler pins system (DPS). Characteristic parameters of free surface velocity are calculated using the measured data. Results show that the spall strength of OFHC is enhanced with the increase in strain rate. It is indicated that the rate from the minima to the spall peak grows slowly at low stain rate, but steeply at high strain rate. The slope as it appears, from the minima to the spall peak is very different as the strain rate increases, The interaction of shock waves in the copper samples is systematically analysed to access the slope characteristics.
    • 基金项目: 中国工程物理研究院科学基金重点项目(批准号:2011A0201002)和国家自然科学基金(批准号:11202196,11172221)资助的课题.
    • Funds: Project supported by the Science Foundation of China Academy of Engineering Physics(Grant No.2011A0201002), and the National Natural Science Foundation of China (Grant Nos. 11202196, 11172221).
    [1]

    Chen M W, McCauley J W, Dandekar D P, Bourne N K 2006 Nat. Mater. 5 614

    [2]

    Lu K 2010 Science 328 319

    [3]

    Antoun T, Seaman L, Curran D R, Kanel G I, Razorenov S V, Utkin A V 2003 Spall fracture (New York: Springer) pp1-20

    [4]

    Chen Q Y, Liu K X 2011 Chin. Phys. Lett. 28 064602

    [5]

    Curran D R, Seaman L, Shockey D A 1987 Phys. Rep. 147 253

    [6]

    Meyers M A, Aimone C T 1983 Prog. Mater. Sci. 28 1

    [7]

    Qi M L, Zhong S, He H L, Fan D, Zhao L 2013 Chin. Phys. B 22 046203

    [8]

    Zhang F G, Zhou H Q, Hu J, Shao J L, Zhang G C, Hong T, He B 2012 Chin. Phys. B 21 094601

    [9]

    Divakov A K, Mescheryakov Y I, Zhigacheva N I, Barakhtin B K, Gooch W A 2010 Phys. Mesomech. 13 113

    [10]

    Kanel G I, Baumung K, Singer J, Razorenov S V 2000 Appl. Phys. Lett. 76 3230

    [11]

    Wang Y, He H, Boustie M, Sekine T 2007 J. Appl. Phys. 101 103528

    [12]

    Wang Y G, He H L, Wang L L 2013 Mech. Mater. 56 131

    [13]

    Boyce B L, Clark B G, Lu P, Carroll J D, Weinberger C R 2013 Metall. Mater. Trans. A 44 4567

    [14]

    Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2013 Acta Phys. Sin. 62 226201(in Chinese) [彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰 2013 物理学报 62 226201]

    [15]

    Wayne L, Krishnan K, DiGiacomo S, Kovvali N, Peralta P, Luo S N, Greenfield S, Byler D, Paisley D, McClellan K J, Koskelo A, Dickerson R 2010 Scr. Mater. 63 1065

    [16]

    Chen X, Asay J R, Dwivedi S K, Field D P 2006 J. Appl. Phys. 99 023528

    [17]

    Qi M L, Luo C, He H L, Wang Y G, Fan D, Yan S L 2012 J. Appl. Phys. 111 043506

    [18]

    Dalton D A, Brewer J L, Bernstein A C, Grigsby W, Milathianaki D, Jackson E D, Adams R G, Rambo P, Schwarz J, Edens A, Geissel M, Smith I, Taleff E M, Ditmire T 2008 J. Appl. Phys. 104 013526

    [19]

    Johnson J N, GrayⅢ G T, Bourne N K 1999 J. Appl. Phys. 86 4289

    [20]

    Luo S N, An Q, Germann T C, Han L B 2009 J. Appl. Phys. 106 013502

    [21]

    Kanel G I, Razorenov S V, Baumung K, Singer J 2001 J. Appl. Phys. 90 136

    [22]

    Armstrong R W, Walley S M 2008 Int. Mater. Rev. 53 105

    [23]

    Remington B A, Bazan G, Belak J, Bringa E, Caturla M, Colvin J D 2004 Metall. Mater. Trans. A 35A 2587

    [24]

    Kanel G I, Razorenov S V, Utkin A V 1993 Dynamic Fracture and Fragmentation, High-Pressure Shock Compression of Solids Ⅱ, edited by Davison L, Grady D E, and Shahinpoor M (New York: Springer)

    [25]

    Minich R W, Cazamias J U, Kumar M, Schwartz A J 2004 Metall. Mater. Trans. A 35A 2663

    [26]

    Kanel G I, Razorenov S V, Bogatch A, Utkin A V, Gray D E 1997 Int. J. Impact Eng. 20 467

    [27]

    Escobedo J P, Dennis-Koller D, Cerreta E K, Patterson B M, Bronkhorst C A, Hansen B L, Tonks D, Lebensohn R A 2011 J. Appl. Phys. 110 033513

    [28]

    Cuq-Lelandais J P, Boustie M, Berthe L, de Rességuier T, Combis P, Colombier J P, Nivard M, Claverie A 2009 J. Phys. D: Appl. Phys. 42 065402

    [29]

    Cuq-Lelandais J P, Boustie M, Soulard L, Berthe L, De Rességuier T, Combis P, Bontaz-Carion J, Lescoute E 2011 EPJ Web of Conferences 10 00014

    [30]

    Jarmakani H, Maddox B, Wei C T, Kalantar D, Meyers M A 2010 Acta Mater. 58 4604

  • [1]

    Chen M W, McCauley J W, Dandekar D P, Bourne N K 2006 Nat. Mater. 5 614

    [2]

    Lu K 2010 Science 328 319

    [3]

    Antoun T, Seaman L, Curran D R, Kanel G I, Razorenov S V, Utkin A V 2003 Spall fracture (New York: Springer) pp1-20

    [4]

    Chen Q Y, Liu K X 2011 Chin. Phys. Lett. 28 064602

    [5]

    Curran D R, Seaman L, Shockey D A 1987 Phys. Rep. 147 253

    [6]

    Meyers M A, Aimone C T 1983 Prog. Mater. Sci. 28 1

    [7]

    Qi M L, Zhong S, He H L, Fan D, Zhao L 2013 Chin. Phys. B 22 046203

    [8]

    Zhang F G, Zhou H Q, Hu J, Shao J L, Zhang G C, Hong T, He B 2012 Chin. Phys. B 21 094601

    [9]

    Divakov A K, Mescheryakov Y I, Zhigacheva N I, Barakhtin B K, Gooch W A 2010 Phys. Mesomech. 13 113

    [10]

    Kanel G I, Baumung K, Singer J, Razorenov S V 2000 Appl. Phys. Lett. 76 3230

    [11]

    Wang Y, He H, Boustie M, Sekine T 2007 J. Appl. Phys. 101 103528

    [12]

    Wang Y G, He H L, Wang L L 2013 Mech. Mater. 56 131

    [13]

    Boyce B L, Clark B G, Lu P, Carroll J D, Weinberger C R 2013 Metall. Mater. Trans. A 44 4567

    [14]

    Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2013 Acta Phys. Sin. 62 226201(in Chinese) [彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰 2013 物理学报 62 226201]

    [15]

    Wayne L, Krishnan K, DiGiacomo S, Kovvali N, Peralta P, Luo S N, Greenfield S, Byler D, Paisley D, McClellan K J, Koskelo A, Dickerson R 2010 Scr. Mater. 63 1065

    [16]

    Chen X, Asay J R, Dwivedi S K, Field D P 2006 J. Appl. Phys. 99 023528

    [17]

    Qi M L, Luo C, He H L, Wang Y G, Fan D, Yan S L 2012 J. Appl. Phys. 111 043506

    [18]

    Dalton D A, Brewer J L, Bernstein A C, Grigsby W, Milathianaki D, Jackson E D, Adams R G, Rambo P, Schwarz J, Edens A, Geissel M, Smith I, Taleff E M, Ditmire T 2008 J. Appl. Phys. 104 013526

    [19]

    Johnson J N, GrayⅢ G T, Bourne N K 1999 J. Appl. Phys. 86 4289

    [20]

    Luo S N, An Q, Germann T C, Han L B 2009 J. Appl. Phys. 106 013502

    [21]

    Kanel G I, Razorenov S V, Baumung K, Singer J 2001 J. Appl. Phys. 90 136

    [22]

    Armstrong R W, Walley S M 2008 Int. Mater. Rev. 53 105

    [23]

    Remington B A, Bazan G, Belak J, Bringa E, Caturla M, Colvin J D 2004 Metall. Mater. Trans. A 35A 2587

    [24]

    Kanel G I, Razorenov S V, Utkin A V 1993 Dynamic Fracture and Fragmentation, High-Pressure Shock Compression of Solids Ⅱ, edited by Davison L, Grady D E, and Shahinpoor M (New York: Springer)

    [25]

    Minich R W, Cazamias J U, Kumar M, Schwartz A J 2004 Metall. Mater. Trans. A 35A 2663

    [26]

    Kanel G I, Razorenov S V, Bogatch A, Utkin A V, Gray D E 1997 Int. J. Impact Eng. 20 467

    [27]

    Escobedo J P, Dennis-Koller D, Cerreta E K, Patterson B M, Bronkhorst C A, Hansen B L, Tonks D, Lebensohn R A 2011 J. Appl. Phys. 110 033513

    [28]

    Cuq-Lelandais J P, Boustie M, Berthe L, de Rességuier T, Combis P, Colombier J P, Nivard M, Claverie A 2009 J. Phys. D: Appl. Phys. 42 065402

    [29]

    Cuq-Lelandais J P, Boustie M, Soulard L, Berthe L, De Rességuier T, Combis P, Bontaz-Carion J, Lescoute E 2011 EPJ Web of Conferences 10 00014

    [30]

    Jarmakani H, Maddox B, Wei C T, Kalantar D, Meyers M A 2010 Acta Mater. 58 4604

  • [1] 张凤国, 赵福祺, 刘军, 何安民, 王裴. 延性金属层裂强度对温度、晶粒尺寸和加载应变率的依赖特性及其物理建模. 物理学报, 2022, 71(3): 034601. doi: 10.7498/aps.71.20210702
    [2] 张凤国. 延性金属层裂强度对温度、晶粒尺寸和加载应变率的依赖特性及其物理建模. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210702
    [3] 林茜, 谢普初, 胡建波, 张凤国, 王裴, 王永刚. 不同晶粒度高纯铜层裂损伤演化的有限元模拟. 物理学报, 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
    [4] 谢普初, 汪小松, 胡昌明, 胡建波, 张凤国, 王永刚. 非一维应变冲击加载下高纯铜初始层裂行为. 物理学报, 2020, 69(3): 034601. doi: 10.7498/aps.69.20191104
    [5] 朱琪, 王升涛, 赵福祺, 潘昊. 层错四面体对单晶铜层裂行为影响的分子动力学研究. 物理学报, 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [6] 席涛, 范伟, 储根柏, 税敏, 何卫华, 赵永强, 辛建婷, 谷渝秋. 超高应变率载荷下铜材料层裂特性研究. 物理学报, 2017, 66(4): 040202. doi: 10.7498/aps.66.040202
    [7] 王凯, 邢艳辉, 韩军, 赵康康, 郭立建, 于保宁, 邓旭光, 范亚明, 张宝顺. 掺Fe高阻GaN缓冲层特性及其对AlGaN/GaN高电子迁移率晶体管器件的影响研究. 物理学报, 2016, 65(1): 016802. doi: 10.7498/aps.65.016802
    [8] 彭辉, 裴晓阳, 李平, 贺红亮, 柏劲松. 高纯铜初始层裂的微损伤特性研究. 物理学报, 2015, 64(21): 216201. doi: 10.7498/aps.64.216201
    [9] 裴晓阳, 彭辉, 贺红亮, 李平. 加载应力幅值对高纯铜动态损伤演化特性研究. 物理学报, 2015, 64(5): 054601. doi: 10.7498/aps.64.054601
    [10] 裴晓阳, 彭辉, 贺红亮, 李平. 延性金属层裂自由面速度曲线物理涵义解读. 物理学报, 2015, 64(3): 034601. doi: 10.7498/aps.64.034601
    [11] 周楠, 陈硕. 带自由面流体的多体耗散粒子动力学模拟. 物理学报, 2014, 63(8): 084701. doi: 10.7498/aps.63.084701
    [12] 刘云龙, 汪玉, 张阿漫. 有倾角的竖直壁面附近气泡与自由面相互作用研究. 物理学报, 2013, 62(21): 214703. doi: 10.7498/aps.62.214703
    [13] 张凤国, 周洪强. 晶粒尺度对延性金属材料层裂损伤的影响. 物理学报, 2013, 62(16): 164601. doi: 10.7498/aps.62.164601
    [14] 陈永涛, 唐小军, 李庆忠. Fe基α相合金的冲击相变及其对层裂行为的影响研究. 物理学报, 2011, 60(4): 046401. doi: 10.7498/aps.60.046401
    [15] 王永刚, 胡剑东, 祁美兰, 贺红亮. 基于单孔洞近似的高纯铝部分层裂实验的数值模拟研究. 物理学报, 2011, 60(12): 126201. doi: 10.7498/aps.60.126201
    [16] 陈大年, 范春雷, 胡金伟, 谭华, 王焕然, 吴善幸, 俞宇颖. 高导无氧铜的高压与高应变率本构模型研究. 物理学报, 2009, 58(4): 2612-2618. doi: 10.7498/aps.58.2612
    [17] 张阿漫, 姚熊亮. 近自由面水下爆炸气泡的运动规律研究. 物理学报, 2008, 57(1): 339-353. doi: 10.7498/aps.57.339
    [18] 王永刚, 贺红亮, M. Boustie, T. Sekine. 强激光辐照下纳米晶体铜薄膜层裂破坏的实验研究. 物理学报, 2008, 57(1): 411-415. doi: 10.7498/aps.57.411
    [19] 王永刚, 陈登平, 贺红亮, 王礼立, 经福谦. 冲击加载下LY12铝合金的动态屈服强度和层裂强度与温度的相关性. 物理学报, 2006, 55(8): 4202-4207. doi: 10.7498/aps.55.4202
    [20] 罗 晋, 祝文军, 林理彬, 贺红亮, 经福谦. 单晶铜在动态加载下空洞增长的分子动力学研究. 物理学报, 2005, 54(6): 2791-2798. doi: 10.7498/aps.54.2791
计量
  • 文章访问数:  4372
  • PDF下载量:  393
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-21
  • 修回日期:  2014-07-02
  • 刊出日期:  2014-10-05

/

返回文章
返回