搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速平板圆台突起物绕流实验和数值模拟研究

冈敦殿 易仕和 赵云飞

引用本文:
Citation:

超声速平板圆台突起物绕流实验和数值模拟研究

冈敦殿, 易仕和, 赵云飞

Experimental and numerical studies of supersonic flow over circular protuberances on a flat plate

Gang Dun-Dian, Yi Shi-He, Zhao Yun-Fei
PDF
导出引用
  • 高速飞行器表面不可避免的存在突起物并形成复杂流场, 从而引起飞行器气动特性和热载荷的变化; 同时, 突起物是流动控制的重要方法之一, 合适的突起物形状及安装位置对于改善冲压发动机进气道性能有重要意义. 本文采用基于纳米粒子的平面激光散射技术(NPLS)研究了马赫3.0来流边界层为层流的平板上三个不同高度圆台突起物绕流流场, 主要关注了突起物后方的尾迹边界层, 并采用高精度的显式五阶精度加权紧致非线性格式(WCNS-E-5)离散求解Navier-Stokes方程模拟了该流场. 获得了超声速圆台绕流精细流场结构, 观察到突起物后方尾迹区域边界层发展的过程. 结合实验和数值模拟结果可以发现, 当圆台高度接近或者小于当地边界层厚度时, 突起物对边界层的扰动非常弱, 圆台后方尾迹边界层能够维持较长距离的层流状态, 在边界层转捩阶段也有清晰的发卡涡结构出现; 反之, 边界层受到的扰动明显增大, 在突起物后方很快发展为湍流; 风洞噪声对本文研究圆台引起的边界层扰动有一定影响, 实验获得的边界层转捩位置要比数值结果靠前. 基于NPLS流场图像, 采用间歇性方法分析了圆台突起物后方边界层的特性, 对于高度大于边界层厚度的圆台其间歇性曲线较为接近并且更加饱满, 边界层的脉动也更为强烈.
    Although high-speed vehicles are designed to be smooth, they tend to have some protuberances on their surfaces. Thus the aerodynamic characteristics and thermal loads are changed. Meanwhile, mounting protuberances on a flat plate is an important way of flow control, and appropriate structure and location of the protuberance can improve the performance of the scramjet inlet remarkably. The nanotracer planar laser scattering (NPLS) technique is used to test the flow field of Mach 3.0 supersonic flow over circular protuberances of different heights. In total three models are tested. And the second-order scheme and fifth-order weighted compact nonlinear scheme (WCNS-E-5) is adopted to simulate the flow field. Fine structures of supersonic flow over the circular protubernaces have been obtained and the development of boundary layer in the wake flow can be observed. By comparison, it may be concluded that the protuberance lower than the local thickness will have weak disburances on its boundary layer development, and the layer after reattachment can keep its laminar state within a long distance. During the transition many clear hairpin vortices can be distinguished. When the protuberance height is larger than the thickness of the boundary layer, and the later in the region of wake flow would develop into a turbulence quickly due to intense disturbances. The transition point observed from the experimental results lies closer to the protuberance, and this might be cansed by the noise from the walls of the wind tunnel. Intermittency analysis has been done for the boundary layer in the wake flow based on the NPLS images, and the results show that the intermittency curves of the two protuberances that are larger than the local boundary layer thickness are quite similar and fluctuations are strong.
    • 基金项目: 国家自然科学基金(批准号: 11302256, 11172326)资助的课题.
    • Funds: Project supported by tthe National Natural Science Foundation of China (Grant Nos. 11302256, 11172326).
    [1]

    Li S X 2007 Complex flow with the leading of shock wave and boundary layer (Beijing: Science Press) pp11-52 (in Chinese) [李素循2007激波与边界层主导的复杂流动(北京: 科学出版社)第11–52页]

    [2]

    Sedney R 1973 AIAA J. 11 782

    [3]

    Bernardini M, Pirozzoli S, Orlandi P, Lele S K 2014 AIAA J. DOI: 10.2514/1.J052842

    [4]

    Wang D P 2012 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [王登攀 2012 博士学位论文 (湖南长沙: 国防科学技术大学)]

    [5]

    Voitenko D M, Zubkov A I, Panov Y A 1966 Fluid Dyn. 1 121

    [6]

    Burbank P B 1962 NASA TN D-1372

    [7]

    Westkaemper J C 1967 AIAA J. 6 1352

    [8]

    Sedney R, Kitchens C W 1976 AIAA J. 15 546

    [9]

    Ozcan O, Holt M 1984 AIAA J. 22 611

    [10]

    Wheaton B M 2012 Ph. D. Dissertation (West Lafayette: Purdue University)

    [11]

    Wheaton B M, Schneider S P 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, 4-7 January 2010, AIAA 2010-1574

    [12]

    Bartkowicz M D, Subbareddy P K, Candler G V 2010 40th Fluid Dynamics Conference and Exhibit Chicago, Illinois, 28 June-1 July 2010, AIAA 2010-4723

    [13]

    Wang D P, Zhao Y X, Xia Z X, Wang Q H, Luo Z B 2012 Chin. Phys. Lett. 29 084702

    [14]

    White J T 1995 AIAA Paper 95-1789-CP

    [15]

    Manokaran K, Vidya G, Goyal V K 2003 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, AIAA 2003-1253

    [16]

    Schneider S P 2008 J. Spacecraft Rockets 45 193

    [17]

    Ma H D, Li S X, Chen Y K 2000 Acta Mech. Sin. 32 486 (in Chinese) [马汉东, 李素循, 陈永康 2000 力学学报 32 486]

    [18]

    Pan H L, Li J H, Zhang X J 2013 Chin. J. Comput Phys. 30 825 (in Chinese) [潘宏禄, 李俊红, 张学军 2013 计算物理 30 825]

    [19]

    Deng X G, Zhang H X 2000 J. Comput Phys. 165 22

    [20]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 62 084219 (in Chinese) [武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 物理学报 62 084219]

    [21]

    Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H Fu J 2013 Acta Phys. Sin. 62 184702 (in Chinese) [朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 物理学报 62 184702]

    [22]

    Liu X, Deng X G, Mao M L 2007 AIAA J. 45 2093-2097

    [23]

    He L 2011 Ph.D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [何霖 2011 博士学位论文 (长沙: 国防科学技术大学)]

    [24]

    Xu W X, Xu W C 1989 Viscous Fulid Dyn. (Beijing: Press of Beijing Institute of Technology) p481 (in Chinese) [徐文熙, 徐文灿1989 黏性流体力学 (北京: 北京理工大学出版社)第481页]

    [25]

    Humble R A, Peltier S J, Bowersox R D W 2012 Phys. Fluids 24 106103

  • [1]

    Li S X 2007 Complex flow with the leading of shock wave and boundary layer (Beijing: Science Press) pp11-52 (in Chinese) [李素循2007激波与边界层主导的复杂流动(北京: 科学出版社)第11–52页]

    [2]

    Sedney R 1973 AIAA J. 11 782

    [3]

    Bernardini M, Pirozzoli S, Orlandi P, Lele S K 2014 AIAA J. DOI: 10.2514/1.J052842

    [4]

    Wang D P 2012 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [王登攀 2012 博士学位论文 (湖南长沙: 国防科学技术大学)]

    [5]

    Voitenko D M, Zubkov A I, Panov Y A 1966 Fluid Dyn. 1 121

    [6]

    Burbank P B 1962 NASA TN D-1372

    [7]

    Westkaemper J C 1967 AIAA J. 6 1352

    [8]

    Sedney R, Kitchens C W 1976 AIAA J. 15 546

    [9]

    Ozcan O, Holt M 1984 AIAA J. 22 611

    [10]

    Wheaton B M 2012 Ph. D. Dissertation (West Lafayette: Purdue University)

    [11]

    Wheaton B M, Schneider S P 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, 4-7 January 2010, AIAA 2010-1574

    [12]

    Bartkowicz M D, Subbareddy P K, Candler G V 2010 40th Fluid Dynamics Conference and Exhibit Chicago, Illinois, 28 June-1 July 2010, AIAA 2010-4723

    [13]

    Wang D P, Zhao Y X, Xia Z X, Wang Q H, Luo Z B 2012 Chin. Phys. Lett. 29 084702

    [14]

    White J T 1995 AIAA Paper 95-1789-CP

    [15]

    Manokaran K, Vidya G, Goyal V K 2003 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, AIAA 2003-1253

    [16]

    Schneider S P 2008 J. Spacecraft Rockets 45 193

    [17]

    Ma H D, Li S X, Chen Y K 2000 Acta Mech. Sin. 32 486 (in Chinese) [马汉东, 李素循, 陈永康 2000 力学学报 32 486]

    [18]

    Pan H L, Li J H, Zhang X J 2013 Chin. J. Comput Phys. 30 825 (in Chinese) [潘宏禄, 李俊红, 张学军 2013 计算物理 30 825]

    [19]

    Deng X G, Zhang H X 2000 J. Comput Phys. 165 22

    [20]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 62 084219 (in Chinese) [武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 物理学报 62 084219]

    [21]

    Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H Fu J 2013 Acta Phys. Sin. 62 184702 (in Chinese) [朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 物理学报 62 184702]

    [22]

    Liu X, Deng X G, Mao M L 2007 AIAA J. 45 2093-2097

    [23]

    He L 2011 Ph.D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [何霖 2011 博士学位论文 (长沙: 国防科学技术大学)]

    [24]

    Xu W X, Xu W C 1989 Viscous Fulid Dyn. (Beijing: Press of Beijing Institute of Technology) p481 (in Chinese) [徐文熙, 徐文灿1989 黏性流体力学 (北京: 北京理工大学出版社)第481页]

    [25]

    Humble R A, Peltier S J, Bowersox R D W 2012 Phys. Fluids 24 106103

  • [1] 郭广明, 朱林, 邢博阳. 超声速混合层涡结构内部流体的密度分布特性. 物理学报, 2020, 69(14): 144701. doi: 10.7498/aps.69.20200255
    [2] 李强, 赵磊, 陈苏宇, 江涛, 庄宇, 张扣立. 展向凹槽及泄流孔对高超声速平板边界层转捩影响的试验研究. 物理学报, 2020, 69(2): 024703. doi: 10.7498/aps.69.20191155
    [3] 张博, 何霖, 易仕和. 超声速湍流边界层密度脉动小波分析. 物理学报, 2020, 69(21): 214702. doi: 10.7498/aps.69.20200748
    [4] 唐冰亮, 郭善广, 宋国正, 罗彦浩. 脉冲电弧等离子体激励控制超声速平板边界层转捩实验. 物理学报, 2020, 69(15): 155201. doi: 10.7498/aps.69.20200216
    [5] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [6] 王鹏, 沈赤兵. 等离子体合成射流对超声速混合层的混合增强. 物理学报, 2019, 68(17): 174701. doi: 10.7498/aps.68.20190683
    [7] 许昊, 王聪, 陆宏志, 黄文虎. 水下超声速气体射流诱导尾空泡实验研究. 物理学报, 2018, 67(1): 014703. doi: 10.7498/aps.67.20171617
    [8] 张孝石, 许昊, 王聪, 陆宏志, 赵静. 水流冲击超声速气体射流实验研究. 物理学报, 2017, 66(5): 054702. doi: 10.7498/aps.66.054702
    [9] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性. 物理学报, 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [10] 付佳, 易仕和, 王小虎, 张庆虎, 何霖. 高超声速平板边界层流动显示的试验研究. 物理学报, 2015, 64(1): 014704. doi: 10.7498/aps.64.014704
    [11] 朱杨柱, 易仕和, 孔小平, 何霖. 带喷流超声速后台阶流场精细结构及其运动特性研究. 物理学报, 2015, 64(6): 064701. doi: 10.7498/aps.64.064701
    [12] 武宇, 易仕和, 何霖, 全鹏程, 朱杨柱. 基于流动显示的压缩拐角流动结构定量研究. 物理学报, 2015, 64(1): 014703. doi: 10.7498/aps.64.014703
    [13] 朱杨柱, 易仕和, 孔小平, 全鹏程, 陈植, 田立丰. 基于NPLS的超声速后台阶流场精细结构及其非定常特性. 物理学报, 2014, 63(13): 134701. doi: 10.7498/aps.63.134701
    [14] 朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳. 带喷流超声速光学头罩流场气动光学畸变试验研究. 物理学报, 2013, 62(8): 084219. doi: 10.7498/aps.62.084219
    [15] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究. 物理学报, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [16] 蓝 可, 贺贤土, 赖东显, 李双贵. 柱输运管中扩散超声速辐射波的能流. 物理学报, 2006, 55(7): 3789-3795. doi: 10.7498/aps.55.3789
    [17] 袁行球, 李 辉, 赵太泽, 俞国扬, 郭文康, 须 平. 超声速等离子体射流的数值模拟. 物理学报, 2004, 53(8): 2638-2643. doi: 10.7498/aps.53.2638
    [18] 余超凡, 周义昌. 带有次近邻相互作用的非谐性线性链中亚声速和超声速孤子. 物理学报, 1994, 43(10): 1677-1687. doi: 10.7498/aps.43.1677
    [19] 周义昌, 余超凡. 一维线性链的亚声速和超声速孤立子. 物理学报, 1992, 41(12): 2016-2023. doi: 10.7498/aps.41.2016
    [20] 庄逢甘. 查甫雷金气体的超声速运动. 物理学报, 1955, 11(2): 107-124. doi: 10.7498/aps.11.107
计量
  • 文章访问数:  5009
  • PDF下载量:  402
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-05
  • 修回日期:  2014-10-27
  • 刊出日期:  2015-03-05

/

返回文章
返回