搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合周期栅网结构的频率选择表面设计研究

张建 高劲松 徐念喜 于淼

引用本文:
Citation:

基于混合周期栅网结构的频率选择表面设计研究

张建, 高劲松, 徐念喜, 于淼

Design and study of frequency selective surface based on hybrid period metallic mesh

Zhang Jian, Gao Jin-Song, Xu Nian-Xi, Yu Miao
PDF
导出引用
  • 在栅网结构上设计的频率选择表面能够同时实现红外高透过率和毫米波带通的物理特性. 为了提高其光学透过率, 降低表面电阻, 抑制高次衍射能量对光学系成像质量的影响, 本文通过分析基于栅网结构的频率选择表面衍射光强和表面电流, 提出一种新型基于混合周期栅网结构的频率选择表面. 计算及实验结果均表明: 在实现稳定的毫米波带通滤波的同时, 基于混合周期栅网结构的频率选择表面红外透过率提高了5%以上, 表面电阻平均降低了4 Ω, 有效地抑制了因高次衍射能量集中分布而对红外光学系统成像质量的影响.
    Frequency selective surface based on metallic mesh can realize the physical properties of both high infrared transmittance and millimeter-wave band-pass filter. In order to improve the optical transmittance, reduce surface resistance and suppress the effect of high order diffraction energy on the imaging quality of the optical system, a new design of frequency selective surface based on hybrid period metallic mesh is obtained. In this paper, the diffraction intensity distribution and surface current of frequency selective surface are analyzed based on metallic mesh. Simulation and experimental results show that frequency selective surface based on hybrid period metallic mesh realizes a stable millimeter-wave band-pass filter property, at the same time, it obtains 5% increase of infrared transmittance and 4 Ω reduce of surface resistance. New design of frequency selective surface based on hybrid period metallic mesh effectively suppresses the effect of high order diffraction energy on the imaging quality of the optical system.
    • 基金项目: 国家自然科学基金(批准号: 61401424)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61401424).
    [1]

    Zhang J, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 147304 (in Chinese) [张建, 高劲松, 徐念喜 2013 物理学报 62 147304]

    [2]

    Yu M, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 204208 (in Chinese) [于淼, 高劲松, 徐念喜 2013 物理学报 62 204208]

    [3]

    Zhu H X, Feng X G, Zhao J L, Liang F C, Wang Y S, Chen X, Gao J S 2010 Acta Opt. Sin. 30 2766 (in Chinese) [朱华新, 冯晓国, 赵晶丽, 梁凤超, 王岩松, 陈新, 高劲松 2010 光学学报 30 2766]

    [4]

    Liu Y M, Tan J B 2013 Opt. Express 21 4228

    [5]

    Yu M, Xu N X, Liu H, Gao J S 2014 AIP Adv. 4 027112

    [6]

    Jacoby K T, Pieratt M W, Halman J I, Ramsey K A 2009 Proc. SPIE 7302

    [7]

    Halman J I, Ramsey K A, Thomas M, Griffin A 2009 Proc. SPIE 7302

    [8]

    Xu N X, Gao J S, Feng X G 2014 Acta Phys. Sin. 63 138401 (in Chinese) [徐念喜, 高劲松, 冯晓国 2014 物理学报 63 138401]

    [9]

    Wang X Z, Gao J S, Liu H, Xu N X 2014 Chin. Phys. B 23 047303

  • [1]

    Zhang J, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 147304 (in Chinese) [张建, 高劲松, 徐念喜 2013 物理学报 62 147304]

    [2]

    Yu M, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 204208 (in Chinese) [于淼, 高劲松, 徐念喜 2013 物理学报 62 204208]

    [3]

    Zhu H X, Feng X G, Zhao J L, Liang F C, Wang Y S, Chen X, Gao J S 2010 Acta Opt. Sin. 30 2766 (in Chinese) [朱华新, 冯晓国, 赵晶丽, 梁凤超, 王岩松, 陈新, 高劲松 2010 光学学报 30 2766]

    [4]

    Liu Y M, Tan J B 2013 Opt. Express 21 4228

    [5]

    Yu M, Xu N X, Liu H, Gao J S 2014 AIP Adv. 4 027112

    [6]

    Jacoby K T, Pieratt M W, Halman J I, Ramsey K A 2009 Proc. SPIE 7302

    [7]

    Halman J I, Ramsey K A, Thomas M, Griffin A 2009 Proc. SPIE 7302

    [8]

    Xu N X, Gao J S, Feng X G 2014 Acta Phys. Sin. 63 138401 (in Chinese) [徐念喜, 高劲松, 冯晓国 2014 物理学报 63 138401]

    [9]

    Wang X Z, Gao J S, Liu H, Xu N X 2014 Chin. Phys. B 23 047303

计量
  • 文章访问数:  5306
  • PDF下载量:  266
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-17
  • 修回日期:  2014-10-23
  • 刊出日期:  2015-03-05

/

返回文章
返回