搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介质表面附近微波大气击穿的理论研究

周前红 董烨 董志伟 周海京

引用本文:
Citation:

介质表面附近微波大气击穿的理论研究

周前红, 董烨, 董志伟, 周海京

Theoretical study of the microwave air breakdown at dielectric surface

Zhou Qian-Hong, Dong Ye, Dong Zhi-Wei, Zhou Hai-Jing
PDF
导出引用
  • 将麦克斯韦方程组和简化等离子体方程耦合求解, 对介质表面附近大气击穿形成等离子体的过程进行了理论研究. 分别使用一维、二维模型对等离子体的形成过程及等离子体对电磁波的反射、吸收过程进行了模拟研究. 一维计算结果发现在ne = 0, j = 0两种边界条件下, 虽然形成的等离子体密度分布相差较大, 但二者得到的微波反射、吸收、透射波形彼此相差不大. 初始电子数密度厚度为20 mm的条件下, 得到界面附近的等离子体密度大于5 mm厚度的情况. 二维计算结果发现, 由于TE10模在波导中心位置处的微波电场最强, 电子碰撞电离首先在中心位置处形成等离子体, 当等离子体密度达到一定值(临界密度附近)时, 波导中心介质表面处微波场强减小, 等离子体区域沿着介质表面向两侧移动. TE10模在波导边缘处微波电场强度小于击穿阈值, 因此等离子体区域不可能移动到波导边缘附近.
    Microwave air breakdown at dielectric surface is investigated by numerically solving the fluid-based plasma equations coupled with the Maxwell equations. The plasma formation and microwave scattering and absorption by plasma are investigated by one-dimensional (1D) and two-dimensional (2D) models. In the 1D model, it is found that at the initial stage of microwave breakdown, the plasma develops in the whole plasma region. As time increases, the plasma in the upstream grows much faster than in the downstream. Although the electron density distributions for ne = 0 and j = 0 are different, the microwave reflection, absorption and transmission are almost the same. It is found that the electron number density in the upstream region for 20 mm is larger than for 5 mm. In the 2D model, it is found for TE10 mode that the plasmoid first grows in the middle of waveguide until its density becomes large enough to diffract the incident field, then the plasma region moves along the surface to both sides. The plasma region cannot reach the wall of waveguide, where the electric field is smaller than the breakdown threshold. After comparison between the computational and experimental results, it is found that the simulated absorbed power is larger than the measured one, and the transmitted power is smaller than than measured one. The reason is that the initial electron densities in 1D and 2D simulation are both assumed to cover the whole dielectric surface, but the plasma in experiment develops in a very small region.
    • 基金项目: 国家重点基础研究发展规划(批准号: 2013CB328904)、国家自然科学基金(批准号: 11105018, 11305015, 61201113, 11475155)和国防基础科研计划(批准号: B1520132018)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB328904), the National Natural Science Foundation of China (Grant Nos. 11105018, 11305015, 61201113, 11475155), and the National Defense Basic Research Program of China (Grant No. B1520132018).
    [1]

    Gurevich A, Borisov N, Milikh G 1997 Physics of Microwave Discharges (New York: Gordon and Breach)

    [2]

    Barker R J, Schamiloglu E 2001 High Power Microwave Sources and Technologies (New York: Institute of Electrical and Electonics Engineers, Inc.)

    [3]

    Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504

    [4]

    Neuber A A, Krile J T, Edmiston G F, Krompholz H G 2007 Phys. Plasmas 14 057102

    [5]

    MacDonald A D 1966 Microwave Breakdown in Gases (New York: John Wiley & Sons)

    [6]

    Ford P J, Beeson S R, Krompholz H K, Neuber A A 2012 Phys. Plasmas 19 073503

    [7]

    Foster J E 2012 Ph. D. Dissertation (Lubbock: Texas Technical University)

    [8]

    Aleksandrov K V, Grachev L P, Esakov I I, Khodataev K V 2002 Tech. Phys. 47 851

    [9]

    Aleksandrov K V, Shibkov V M, Shibkova L V 2008 Moscow Univ. Phys. Bull. 63 365

    [10]

    Boeuf J P, Chaudhury B, Zhu G Q 2010 Phys. Rev. Lett. 104 015002

    [11]

    Zhou Q H, Dong Z W, Chen J Y 2011 Acta Phys. Sin. 60 125202 (in Chinese) [周前红, 董志伟, 陈京元 2011 物理学报 60 125202]

    [12]

    Zhou Q H, Dong Z W 2013 Acta Phys. Sin. 62 205201 (in Chinese) [周前红, 董志伟 2013 物理学报 62 205201]

    [13]

    Zhou Q H, Dong Z W 2011 Appl. Phys. Lett. 98 161504

    [14]

    Cummer S A 1997 IEEE Trans. Antennas Propagat. 45 392

  • [1]

    Gurevich A, Borisov N, Milikh G 1997 Physics of Microwave Discharges (New York: Gordon and Breach)

    [2]

    Barker R J, Schamiloglu E 2001 High Power Microwave Sources and Technologies (New York: Institute of Electrical and Electonics Engineers, Inc.)

    [3]

    Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504

    [4]

    Neuber A A, Krile J T, Edmiston G F, Krompholz H G 2007 Phys. Plasmas 14 057102

    [5]

    MacDonald A D 1966 Microwave Breakdown in Gases (New York: John Wiley & Sons)

    [6]

    Ford P J, Beeson S R, Krompholz H K, Neuber A A 2012 Phys. Plasmas 19 073503

    [7]

    Foster J E 2012 Ph. D. Dissertation (Lubbock: Texas Technical University)

    [8]

    Aleksandrov K V, Grachev L P, Esakov I I, Khodataev K V 2002 Tech. Phys. 47 851

    [9]

    Aleksandrov K V, Shibkov V M, Shibkova L V 2008 Moscow Univ. Phys. Bull. 63 365

    [10]

    Boeuf J P, Chaudhury B, Zhu G Q 2010 Phys. Rev. Lett. 104 015002

    [11]

    Zhou Q H, Dong Z W, Chen J Y 2011 Acta Phys. Sin. 60 125202 (in Chinese) [周前红, 董志伟, 陈京元 2011 物理学报 60 125202]

    [12]

    Zhou Q H, Dong Z W 2013 Acta Phys. Sin. 62 205201 (in Chinese) [周前红, 董志伟 2013 物理学报 62 205201]

    [13]

    Zhou Q H, Dong Z W 2011 Appl. Phys. Lett. 98 161504

    [14]

    Cummer S A 1997 IEEE Trans. Antennas Propagat. 45 392

  • [1] 刘曰利, 赵思杰, 陈文, 周静. SiO2/聚四氟乙烯复合介质材料热性能和介电性能的数值模拟. 物理学报, 2022, 71(21): 210201. doi: 10.7498/aps.71.20220839
    [2] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [3] 宋利伟, 石颖, 陈树民, 柯璇, 侯晓慧, 刘志奇. 地下黏弹性介质波动方程及波场数值模拟. 物理学报, 2021, 70(14): 149102. doi: 10.7498/aps.70.20210005
    [4] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [5] 周前红, 孙会芳, 董志伟, 周海京. 微波大气击穿阈值的理论研究. 物理学报, 2015, 64(17): 175202. doi: 10.7498/aps.64.175202
    [6] 王平, 尹玉真, 沈胜强. 三维有序排列多孔介质对流换热的数值研究. 物理学报, 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [7] 周洪强, 于明, 孙海权, 董贺飞, 张凤国. 炸药爆轰的连续介质本构模型和数值计算方法. 物理学报, 2014, 63(22): 224702. doi: 10.7498/aps.63.224702
    [8] 蒋勇, 贺少勃, 袁晓东, 王海军, 廖威, 吕海兵, 刘春明, 向霞, 邱荣, 杨永佳, 郑万国, 祖小涛. CO2激光光栅式扫描修复熔石英表面缺陷的实验研究与数值模拟. 物理学报, 2014, 63(6): 068105. doi: 10.7498/aps.63.068105
    [9] 欧阳建明, 马燕云, 邵福球, 邹德滨. 高空核爆炸下大气的X射线电离及演化过程数值模拟. 物理学报, 2012, 61(8): 083201. doi: 10.7498/aps.61.083201
    [10] 欧阳建明, 邵福球, 邹德滨. 大气等离子体中负氧离子产生和演化过程数值模拟. 物理学报, 2011, 60(11): 110209. doi: 10.7498/aps.60.110209
    [11] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟. 物理学报, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [12] 蔡利兵, 王建国, 朱湘琴. 强直流场介质表面次级电子倍增效应的数值模拟研究. 物理学报, 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [13] 蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究. 物理学报, 2011, 60(2): 025217. doi: 10.7498/aps.60.025217
    [14] 花金荣, 祖小涛, 李莉, 向霞, 陈猛, 蒋晓东, 袁晓东, 郑万国. 熔石英亚表面三维Hertz锥形划痕附近光强分布的数值模拟. 物理学报, 2010, 59(4): 2519-2524. doi: 10.7498/aps.59.2519
    [15] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [16] 庞学霞, 邓泽超, 董丽芳. 不同电离度下大气等离子体粒子行为的数值模拟. 物理学报, 2008, 57(8): 5081-5088. doi: 10.7498/aps.57.5081
    [17] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究. 物理学报, 2006, 55(11): 5923-5929. doi: 10.7498/aps.55.5923
    [18] 欧阳建明, 邵福球, 王 龙, 房同珍, 刘建全. 一维大气等离子体化学过程数值模拟. 物理学报, 2006, 55(9): 4974-4979. doi: 10.7498/aps.55.4974
    [19] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [20] 王艳辉, 王德真. 介质阻挡均匀大气压辉光放电数值模拟研究. 物理学报, 2003, 52(7): 1694-1700. doi: 10.7498/aps.52.1694
计量
  • 文章访问数:  4649
  • PDF下载量:  635
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-20
  • 修回日期:  2014-11-04
  • 刊出日期:  2015-04-05

/

返回文章
返回