搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可调控多肽纳米管和石墨烯复合纳米结构的光吸收催化平台

薛斌 王洪阳 秦猛 曹毅 王炜

引用本文:
Citation:

基于可调控多肽纳米管和石墨烯复合纳米结构的光吸收催化平台

薛斌, 王洪阳, 秦猛, 曹毅, 王炜

A photocatalysis system based on composite nanostructures of controlable peptide nanotubes and graphene

Xue Bin, Wang Hong-Yang, Qin Meng, Cao Yi, Wang Wei
PDF
导出引用
  • 近年来, 自组装纳米结构因为其容易制备、稳定、环保以及与各种功能基团、粒子等的多样结合能力吸引了科学家们的目光, 成为人们研究的热点课题, 在光电池、光催化、水凝胶、药物缓释等方面的实验科学领域得到了广泛的应用. 尤其是光催化方面, 自组装结构的重复性为激子的传递创造了比较良好的条件, 成为众多激子传递平台中的佼佼者. 本文报道了一种以苯丙氨酸二肽纳米管和羧基石墨烯为基础的自组装光吸收催化平台, 对其结构进行研究, 并使用该体系进行了烟酰胺腺嘌呤二核苷酸到它的还原态的催化实验. 该体系的微观结构由纳米管和石墨烯膜复合而成, 羧基石墨烯的存在能够降低纳米管直径, 实现纳米管的形态操控, 石墨烯与多肽纳米管复合纳米结构的存在实现了多通道协同激子传递, 降低了激子传递的距离, 极大增强了催化中心对于激子的接受和使用效率. 在复合了光敏剂和催化中心之后, 该体系具有较高的稳定性, 均一的分散性, 很强的光能吸收和转化能力等性质. 对于从NADP+往NADPH转变的催化实验表明, 该体系有较高的反应速率和催化效率, 并且比两种单一结构催化平台效果之和更好, 实现了一加一大于二的效应, 展现了复合纳米结构光吸收催化平台的巨大潜力和广阔应用前景.
    Self-assembly is the way that is used by Mother Nature to create complex materials of hierarchical shapes and diverse functionalities. The photosynthesis apparatus of plant is an example of such complex materials that can direct convert the sunlight energy into chemical energy. Inspired by this, many artificial photosynthesis systems have been successfully engineered. However, most of these systems were based on only one type of simple nanostructure, such as nanosphere or nanotube. The charge separation and exciton transfer in such systems may be further improved by combining multiple nano-structures. Here, we report a novel photo catalysis system based on composite nanostructures of controllable peptide nanotubes and graphene. We use the mixture of diphenylalanine (FF) and carboxyl graphene for the photo catalysis because they are stable under different solvent conditions and highly conductive, which can provide more paths for exciton transfer. Moreover, the diameters of the peptide nanotubes become thinner in the preflence of carboxyl graphene, leading to a more uniformly distributed system than simply using the peptide nanotubes alone. The FF peptide nanotubes can connect with the carbonyl graphene (CG) to form the composite nanostructures because of the π-π stacking interaction between benzene rings of FF and conjugated πup bond of CG. The composite nanostructures of controllable peptide nanotubes and graphene provide more transmission channels for the excitions since they can travel on the nanotubes, CG or the compound of the both. We also demonstrate that when the photo-harvesting ruthenium complex and catalytic platinum nanoparticles are deposited on the system, the nicotinamide adenine dinucleotide (NADP+) can reduce to NADPH. The catalytic efficiency and rate are much higher than thaose of other artificial photosynthesis systems reported in the literature. Surprisingly, we find that the catalytic efficiency of the combined system is better than the sum of separated systems with only FF nanotubes or carboxyl graphene. The high turnover frequency, high reaction rate, and low toxicity of this artificial photosynthesis system will make the combined system attractive for large-scale applications, including optoelectronic industry, energy industry, etc.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号: 2013CB834100)和国家自然科学基金(批准号: 11334004, 91127026)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB834100), and the National Natural Science Foundation of China (Grant No. 11334004, 91127026).
    [1]

    Jordan P, Fromme P, Witt H T, Klukas O, Saenger W, Krauss N 2001 Nature 411 909

    [2]

    Hasobe T 2010 Phys. Chem. Chem. Phys. 12 44

    [3]

    Kim J H,Lee M, Lee J S, Park C B 2011 Angew. Chem. 123 1196

    [4]

    Chen L, Honsho Y, Seki S, Jiang D 2010 J. Am. Chem. Soc. 132 6742

    [5]

    Peng H Q, Chen Y Z, Zhao Y, Yang Q Z, Wu L Z, Tung C H, Zhang L P, Tong Q X 2012 Angew. Chem. 51 2088

    [6]

    Ryu J, Lim S Y, Park C B 2009 Adv Mater. 21 1577

    [7]

    Nam D H, Lee S H, Park C B 2010 Small 6 922

    [8]

    Zouni A, Witt H T, Kern J, Fromme P, Krauss N, Saenger W, Orth P 2001 Nature 409 739

    [9]

    Amunts A, Drory O, Nelson N 2007 Nature. 447 58

    [10]

    Kim J H,Lee M, Lee J S, Park C B 2012 Angew. Chem. 51 517

    [11]

    Xue B, Li Y, Yang F, Zhang C F, Qin M, Cao Y, Wan W 2014 Nanoscale 6 7832

    [12]

    Weingarten A S, Kazantsev R V, Palmer L C, McClendon M, Koltonow A R, Samuel A P S, Kiebala D J, Wasielewski M R, Stupp S I 2014 Nature Chemistry 6 964

    [13]

    Reches M, Gazit E 2003 Science 300 625

    [14]

    Adler-Abramovich L, Reches M, Sedman V L, Allen S, Tendler S J B, Gazit E 2006 Langmuir 22 1313

    [15]

    Kol N, Adler-Abramovich L, Barlam D, Shneck R Z, Gazit E, Rousso I 2005 Nano Lett. 5 1343

    [16]

    Reches M, Gazit E 2003 Science 300 625

    [17]

    Amdursky N, Molotskii M, Aronov D, Adler-Abramovich L, Gazit E, Rosenman G 2009 Nano Lett. 9 3111

    [18]

    Andrade-Filho T, Ferreira F F, Alves W A, Rocha A R 2013 Phys. Chem. Chem. Phys. 15 7555

    [19]

    Ryu J, Park C B 2008 Adv. Mater. 20 3754

    [20]

    Li P, Chen X, Yang W 2013 Langmuir 29 8629

    [21]

    Schmidt-Mende L, Kroeze J E, Durrant J R, Nazeeruddin M K, Gratzel M 2005 Nano Lett. 5 1315

    [22]

    Fry N L, Mascharak P K 2011 Acc. Chem. Res. 44 289

    [23]

    Jiang K J, Masaki N, Xia J B, Noda S, Yanagida S 2006 Chem. Commun. 460

    [24]

    Chen C Y, Wang M, Li J Y, Pootrakulchote N, Alibabaei L, Ngoc-le C H, Decoppet J D, Tsai J H, Gratzel C, Wu C G, Zakeeruddin S M, Gratzel M 2009 ACS Nano 3 3103

    [25]

    Happ B, Winter A, Hager M D, Schubert U S 2012 Chem. Soc. Rev. 41 2222

    [26]

    Wang M, Xiong S, Wu X, Chu P K 2011 Small 7 2801

    [27]

    Ryu J, Lim S Y, Park C B 2009 Adv. Mater. 21 1577

    [28]

    Baitalik S, Wang X Y, Schmehl R H 2004 J. Photochem. Photobiol C 5 55

  • [1]

    Jordan P, Fromme P, Witt H T, Klukas O, Saenger W, Krauss N 2001 Nature 411 909

    [2]

    Hasobe T 2010 Phys. Chem. Chem. Phys. 12 44

    [3]

    Kim J H,Lee M, Lee J S, Park C B 2011 Angew. Chem. 123 1196

    [4]

    Chen L, Honsho Y, Seki S, Jiang D 2010 J. Am. Chem. Soc. 132 6742

    [5]

    Peng H Q, Chen Y Z, Zhao Y, Yang Q Z, Wu L Z, Tung C H, Zhang L P, Tong Q X 2012 Angew. Chem. 51 2088

    [6]

    Ryu J, Lim S Y, Park C B 2009 Adv Mater. 21 1577

    [7]

    Nam D H, Lee S H, Park C B 2010 Small 6 922

    [8]

    Zouni A, Witt H T, Kern J, Fromme P, Krauss N, Saenger W, Orth P 2001 Nature 409 739

    [9]

    Amunts A, Drory O, Nelson N 2007 Nature. 447 58

    [10]

    Kim J H,Lee M, Lee J S, Park C B 2012 Angew. Chem. 51 517

    [11]

    Xue B, Li Y, Yang F, Zhang C F, Qin M, Cao Y, Wan W 2014 Nanoscale 6 7832

    [12]

    Weingarten A S, Kazantsev R V, Palmer L C, McClendon M, Koltonow A R, Samuel A P S, Kiebala D J, Wasielewski M R, Stupp S I 2014 Nature Chemistry 6 964

    [13]

    Reches M, Gazit E 2003 Science 300 625

    [14]

    Adler-Abramovich L, Reches M, Sedman V L, Allen S, Tendler S J B, Gazit E 2006 Langmuir 22 1313

    [15]

    Kol N, Adler-Abramovich L, Barlam D, Shneck R Z, Gazit E, Rousso I 2005 Nano Lett. 5 1343

    [16]

    Reches M, Gazit E 2003 Science 300 625

    [17]

    Amdursky N, Molotskii M, Aronov D, Adler-Abramovich L, Gazit E, Rosenman G 2009 Nano Lett. 9 3111

    [18]

    Andrade-Filho T, Ferreira F F, Alves W A, Rocha A R 2013 Phys. Chem. Chem. Phys. 15 7555

    [19]

    Ryu J, Park C B 2008 Adv. Mater. 20 3754

    [20]

    Li P, Chen X, Yang W 2013 Langmuir 29 8629

    [21]

    Schmidt-Mende L, Kroeze J E, Durrant J R, Nazeeruddin M K, Gratzel M 2005 Nano Lett. 5 1315

    [22]

    Fry N L, Mascharak P K 2011 Acc. Chem. Res. 44 289

    [23]

    Jiang K J, Masaki N, Xia J B, Noda S, Yanagida S 2006 Chem. Commun. 460

    [24]

    Chen C Y, Wang M, Li J Y, Pootrakulchote N, Alibabaei L, Ngoc-le C H, Decoppet J D, Tsai J H, Gratzel C, Wu C G, Zakeeruddin S M, Gratzel M 2009 ACS Nano 3 3103

    [25]

    Happ B, Winter A, Hager M D, Schubert U S 2012 Chem. Soc. Rev. 41 2222

    [26]

    Wang M, Xiong S, Wu X, Chu P K 2011 Small 7 2801

    [27]

    Ryu J, Lim S Y, Park C B 2009 Adv. Mater. 21 1577

    [28]

    Baitalik S, Wang X Y, Schmehl R H 2004 J. Photochem. Photobiol C 5 55

  • [1] 张红艳, 包黎红, 潮洛蒙, 赵凤岐, 刘子忠. 多功能多元稀土六硼化物La1–x Srx B6光吸收及热电子发射机理. 物理学报, 2021, 70(21): 214204. doi: 10.7498/aps.70.20211069
    [2] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [3] 潘晓剑, 包黎红, 宁军, 赵凤岐, 朝洛蒙, 刘子忠. 多元纳米稀土六硼化物Nd1–xEuxB6粉末的制备及光吸收研究. 物理学报, 2021, 70(3): 036101. doi: 10.7498/aps.70.20201288
    [4] 余鹏, 王保清, 吴小虎, 王文昊, 徐红星, 王志明. 蜂窝状椭圆孔洞吸收器圆二色性研究. 物理学报, 2020, 69(20): 207101. doi: 10.7498/aps.69.20200843
    [5] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [6] 程大伟, 包黎红, 张红艳, 潘晓剑, 那仁格日乐, 赵凤岐, 特古斯, 朝洛濛. 蒸发冷凝法制备超细CeB6和SmB6纳米粉末及可见光穿透特性. 物理学报, 2019, 68(24): 246101. doi: 10.7498/aps.68.20191312
    [7] 胡钧, 高嶷. 界面水与催化. 物理学报, 2019, 68(1): 016803. doi: 10.7498/aps.68.20182180
    [8] 林启民, 张霞, 芦启超, 罗彦彬, 崔建功, 颜鑫, 任晓敏, 黄雪. 氧化石墨烯的结构稳定性及硝酸催化作用的第一性原理研究. 物理学报, 2019, 68(24): 247302. doi: 10.7498/aps.68.20191304
    [9] 任超, 李秀燕, 落全伟, 刘瑞萍, 杨致, 徐利春. 空位缺陷对-AgVO3电子结构和光吸收性能的影响. 物理学报, 2017, 66(15): 157101. doi: 10.7498/aps.66.157101
    [10]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质. 物理学报, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [11] 包黎红, 朝洛蒙, 伟伟, 特古斯. 稀土硼化物LaxCe1-xB6亚微米粉的制备及光吸收研究. 物理学报, 2015, 64(9): 096104. doi: 10.7498/aps.64.096104
    [12] 蒲年年, 李海蓉, 谢龙珍. NiOx作为空穴传输层对有机太阳能电池光吸收的影响. 物理学报, 2014, 63(6): 067201. doi: 10.7498/aps.63.067201
    [13] 狄国庆. 溅射制备Ta2O5薄膜的表面形貌与光学特性. 物理学报, 2011, 60(3): 038101. doi: 10.7498/aps.60.038101
    [14] 郭钊, 陆斌, 蒋雪, 赵纪军. 幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究. 物理学报, 2011, 60(1): 013601. doi: 10.7498/aps.60.013601
    [15] 熊大元, 李志锋, 陈效双, 李 宁, 甄红楼, 陆 卫. 用金属小球进行长波量子阱红外探测器的光耦合. 物理学报, 2007, 56(11): 6648-6653. doi: 10.7498/aps.56.6648
    [16] 杨 光, 陈正豪. 脉冲激光沉积Ag:BaTiO3纳米复合薄膜及其光学特性. 物理学报, 2006, 55(8): 4342-4346. doi: 10.7498/aps.55.4342
    [17] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质. 物理学报, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [18] 秦 华, 傅汝廉, 郜洪云, 刘 娟, 史心刚. 三能级固体激光介质对抽运光吸收的理论研究. 物理学报, 2005, 54(4): 1587-1592. doi: 10.7498/aps.54.1587
    [19] 张琦锋, 侯士敏, 张耿民, 刘惟敏, 薛增泉, 吴锦雷. Ag-BaO薄膜在电场作用下的可见——近红外波段光学吸收特性. 物理学报, 2001, 50(3): 561-565. doi: 10.7498/aps.50.561
    [20] 王银海, 牟季美, 蔡维理, 许彦旗. 纳米Cu/Al2O3组装体模板合成与光吸收. 物理学报, 2001, 50(9): 1751-1755. doi: 10.7498/aps.50.1751
计量
  • 文章访问数:  5364
  • PDF下载量:  325
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-05
  • 修回日期:  2015-03-23
  • 刊出日期:  2015-05-05

/

返回文章
返回