搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X波段微带余割平方扩展波束天线阵赋形优化遗传算法研究

张金玲 万文钢 郑占奇 甘曦 朱兴宇

引用本文:
Citation:

X波段微带余割平方扩展波束天线阵赋形优化遗传算法研究

张金玲, 万文钢, 郑占奇, 甘曦, 朱兴宇

Research on X band extended cosecant squared beam synthesis of micro-strip antenna arrays using genetic algorithm

Zhang Jin-Ling, Wan Wen-Gang, Zheng Zhan-Qi, Gan Xi, Zhu Xing-Yu
PDF
导出引用
  • 提出了一种改进型自适应遗传算法, 该算法用logistic函数拟合交叉概率和变异概率, 以赌轮盘选择和精英保留相结合的方式, 在全局寻找最优解. 与经典遗传算法相比, 改进型自适应遗传算法可以大大提高算法的求解质量. 本文基于改进的自适应遗传算法研究设计了-3 dB范围为0°-12°, -10 dB波束宽度为65°, 波束覆盖为65°, 天线频带范围为8.5-9.8 GHz, 中心频率为9.05 GHz的X波段微带余割平方扩展波束天线阵. 研究结果表明改进型自适应遗传算法对方向图的拟合程度具有较大提高, 适应度值可以从0.07以下提升到0.09以上.
    Synthesis of desired radiation patterns without an optimization algorithm is usually time consuming and inefficient. To achieve a desired radiation pattern such as cosecant squared beam and contoured beam, different evolutionary algorithms such as genetic algorithm (GA), particle swarm optimization algorithm, and invasive weed optimization algorithm have been used to find the excitation of radiation elements. Adaptive genetic algorithm (AGA) optimizer is a robust, stochastic search method, modeled on the principles and concepts of natural selection and evolution. As an optimizer, the powerful heuristic of the AGA is effective for solving complex and related problems. An improved AGA is proposed, in allusion to the characteristics of optimizing designs of antenna arrays which have many parameters and complicated structures. This algorithm constructs an adjustble formula to produce the crossover rate and mutation rate based on a logistic curve equation. In the way of combining roulette wheel selection and elitist strategy, this algorithm searches for the optimal solution in the global space, and is compared with the classical GA; the improved AGA has a better performance in seeking the solution. Taking the mutual coupling between the elements into account, we design the X band extended cosecant squared beam micro-strip antenna arrays based on the improved AGA. Specifications of the antenna are as follows:a -3 dB beam width in height is from 0° to 12°, a -10 dB beam width in height is from 12° to 65°, and a total height coverage is 65°; a frequency band ranges from 8.5 to 9.8 GHz and its center frequency is 9.05 GHz. Simulation results show that the fitness increases from 0.07 to 0.09, and the quality of the synthesized radiation pattern has a great improvement, which verifies the superiority of the improved AGA proposed in this paper. In addition, the prospect of the designed antenna which has an extended cosecant squared beam is promising in air-surveillance radar systems, where the radiation pattern of the antenna will compensate for the free-space loss.
    • 基金项目: 国家自然科学基金(批准号:61171051)和北京市自然科学基金和北京市教育委员会科技计划重点项目(批准号:KZ201310028032)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61171051), and the Scientific Research Project of Beijing Municipal Commission of Education and Beijing Natural Science Foundation, China (Grant No. KZ201310028032).
    [1]

    Foudazi A, Mallahzadeh A R 2012 IET Microw. Antennas Propag. 6 1583

    [2]

    Ares-Pena F J, Rodriguez-Gonzalez J A, Villanueva-Lopez E, Rengarajan S R 1999 IEEE Trans. Antennas Propag. 47 506

    [3]

    Kurup D G, Himdi M, Rydberg A 2003 IEEE Trans. Antennas Propag. 51 2210

    [4]

    Zaman F, Qureshi I M, Munir F, Khan Z U 2014 Chin. Phys. B 23 078402

    [5]

    Sharaqa A, Dib N 2013 IET Microw. Antennas Propag. 7 452

    [6]

    Xu J, Li Z L, Chen R S 2014 Int. J. RF and Microwave CAE 24 360

    [7]

    Pirhadi A, Rahmani M H, Mallahzadeh A 2014 IET Microw. Antennas Propag. 8 549

    [8]

    Dastranj A, Abiri H, Mallahzadeh A 2013 IEEE Trans. Antennas Propag. 61 3895

    [9]

    Zornoza J A, Leberer R, A. Encinar J, Menzel W 2006 IEEE Trans. Antennas Propag. 54 510

    [10]

    Johnson J M, Rahmat-Samii Y 1997 IEEE Antennas Propag. Mag. 39 7

    [11]

    Weile D S, Michielssen E 1997 IEEE Trans. Antennas Propag. 45 343

    [12]

    Chang H W, Ma H, Zhang J Q, Zhang Z Y, Xu Z, Wang J F, Qu S B 2014 Acta Phys. Sin. 63 087804 (in Chinese) [常红伟, 马华, 张介秋, 张志远, 徐卓, 王甲富, 屈绍波 2014 物理学报 63 087804]

    [13]

    Mohammed O A, ler G F 1997 IEEE Trans. Magn. 33 1931

    [14]

    Lee D, Lee S, Kim J W, Lee C G, Jung S Y 2011 IEEE Trans. Magn. 47 1230

    [15]

    Jolly L, Jabbar M A, Liu Q H 2005 IEEE Trans. Magn. 41 3928

    [16]

    Cho D H, Kim J K, Jung H K, Lee C G 2003 IEEE Trans. Magn. 39 1265

    [17]

    Deb K, Pratap A, Agarwal S, Meyarivan T 2002 IEEE Trans. Evol. Comput. 6 182

    [18]

    Chen Z G, Wang J G, Wang Y, Qiao H L, Guo W J, Zhang D H 2013 Acta Phys. Sin. 62 168402 (in Chinese) [陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉 2013 物理学报 62 168402]

    [19]

    Zhong H L, Wu F G, Yao L N 2006 Acta Phys. Sin. 55 275 (in Chinese) [钟会林, 吴福根, 姚立宁 2006 物理学报 55 275]

    [20]

    Yan K K, Lu Y L 1997 IEEE Trans. Antennas Propag. 45 1117

    [21]

    Haupt R L 2008 IEEE Trans. Antennas Propag. 56 266

    [22]

    Son S H, Jeon S I, Kim C J, Hwang W 2010 IEEE Trans. Antennas Propag. 58 1527

    [23]

    Shin D H, Kim K B, Kim J G, Park S O 2014 IEEE Antennas Wirel. Propag. Lett. 13 738

    [24]

    Zhao Y, Xu X, Zhao Y, Chu X N 2014 Comput. Technol. Dev. 24 63 (in Chinese) [赵越, 徐鑫, 赵炎, 初雪宁 2014 计算机技术与发展 24 63]

  • [1]

    Foudazi A, Mallahzadeh A R 2012 IET Microw. Antennas Propag. 6 1583

    [2]

    Ares-Pena F J, Rodriguez-Gonzalez J A, Villanueva-Lopez E, Rengarajan S R 1999 IEEE Trans. Antennas Propag. 47 506

    [3]

    Kurup D G, Himdi M, Rydberg A 2003 IEEE Trans. Antennas Propag. 51 2210

    [4]

    Zaman F, Qureshi I M, Munir F, Khan Z U 2014 Chin. Phys. B 23 078402

    [5]

    Sharaqa A, Dib N 2013 IET Microw. Antennas Propag. 7 452

    [6]

    Xu J, Li Z L, Chen R S 2014 Int. J. RF and Microwave CAE 24 360

    [7]

    Pirhadi A, Rahmani M H, Mallahzadeh A 2014 IET Microw. Antennas Propag. 8 549

    [8]

    Dastranj A, Abiri H, Mallahzadeh A 2013 IEEE Trans. Antennas Propag. 61 3895

    [9]

    Zornoza J A, Leberer R, A. Encinar J, Menzel W 2006 IEEE Trans. Antennas Propag. 54 510

    [10]

    Johnson J M, Rahmat-Samii Y 1997 IEEE Antennas Propag. Mag. 39 7

    [11]

    Weile D S, Michielssen E 1997 IEEE Trans. Antennas Propag. 45 343

    [12]

    Chang H W, Ma H, Zhang J Q, Zhang Z Y, Xu Z, Wang J F, Qu S B 2014 Acta Phys. Sin. 63 087804 (in Chinese) [常红伟, 马华, 张介秋, 张志远, 徐卓, 王甲富, 屈绍波 2014 物理学报 63 087804]

    [13]

    Mohammed O A, ler G F 1997 IEEE Trans. Magn. 33 1931

    [14]

    Lee D, Lee S, Kim J W, Lee C G, Jung S Y 2011 IEEE Trans. Magn. 47 1230

    [15]

    Jolly L, Jabbar M A, Liu Q H 2005 IEEE Trans. Magn. 41 3928

    [16]

    Cho D H, Kim J K, Jung H K, Lee C G 2003 IEEE Trans. Magn. 39 1265

    [17]

    Deb K, Pratap A, Agarwal S, Meyarivan T 2002 IEEE Trans. Evol. Comput. 6 182

    [18]

    Chen Z G, Wang J G, Wang Y, Qiao H L, Guo W J, Zhang D H 2013 Acta Phys. Sin. 62 168402 (in Chinese) [陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉 2013 物理学报 62 168402]

    [19]

    Zhong H L, Wu F G, Yao L N 2006 Acta Phys. Sin. 55 275 (in Chinese) [钟会林, 吴福根, 姚立宁 2006 物理学报 55 275]

    [20]

    Yan K K, Lu Y L 1997 IEEE Trans. Antennas Propag. 45 1117

    [21]

    Haupt R L 2008 IEEE Trans. Antennas Propag. 56 266

    [22]

    Son S H, Jeon S I, Kim C J, Hwang W 2010 IEEE Trans. Antennas Propag. 58 1527

    [23]

    Shin D H, Kim K B, Kim J G, Park S O 2014 IEEE Antennas Wirel. Propag. Lett. 13 738

    [24]

    Zhao Y, Xu X, Zhao Y, Chu X N 2014 Comput. Technol. Dev. 24 63 (in Chinese) [赵越, 徐鑫, 赵炎, 初雪宁 2014 计算机技术与发展 24 63]

  • [1] 王身云, 郑淏予, 李阳. 近场目标自适应聚焦天线. 物理学报, 2020, 69(21): 218402. doi: 10.7498/aps.69.20201525
    [2] 兰俊祥, 曹祥玉, 高军, 韩江枫, 刘涛, 丛丽丽, 王思铭. 一种新型的低散射微带天线阵设计. 物理学报, 2019, 68(3): 034101. doi: 10.7498/aps.68.20181708
    [3] 梅英, 谭冠政, 刘振焘, 武鹤. 基于大脑情感学习模型和自适应遗传算法的混沌时间序列预测. 物理学报, 2018, 67(8): 080502. doi: 10.7498/aps.67.20172104
    [4] 范展, 梁国龙, 王晋晋, 王燕, 陶凯. 一种高效的自适应波束域变换方法及应用研究. 物理学报, 2015, 64(9): 094304. doi: 10.7498/aps.64.094304
    [5] 郭业才, 张宁, 吴礼福, 孙心宇. 基于自适应加权约束最小二乘法的麦克风阵列稳健频率不变波束形成算法. 物理学报, 2015, 64(17): 174303. doi: 10.7498/aps.64.174303
    [6] 黄方意, 时家明, 袁忠才, 汪家春, 许波, 陈宗胜, 王超. 基于等离子体的定向天线阵理论与实验研究. 物理学报, 2013, 62(15): 155201. doi: 10.7498/aps.62.155201
    [7] 陈卫东, 刘要龙, 朱奇光, 陈颖. 基于改进雁群PSO算法的模糊自适应扩展卡尔曼滤波的SLAM算法. 物理学报, 2013, 62(17): 170506. doi: 10.7498/aps.62.170506
    [8] 刘俊群. 斜置平面天线阵的近场-远场方向图分析. 物理学报, 2012, 61(23): 238401. doi: 10.7498/aps.61.238401
    [9] 赵小峰, 黄思训. 垂直天线阵观测信息反演大气折射率廓线. 物理学报, 2011, 60(11): 119203. doi: 10.7498/aps.60.119203
    [10] 汪剑波, 卢俊. 双屏频率选择表面结构的遗传算法优化. 物理学报, 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [11] 李建龙, 吕百达. 基于自适应遗传算法部分相干光整形位相板的优化设计. 物理学报, 2008, 57(5): 3006-3010. doi: 10.7498/aps.57.3006
    [12] 牛培峰, 张 君, 关新平. 基于遗传算法的混沌系统二自由度比例-积分-微分控制研究. 物理学报, 2007, 56(7): 3759-3765. doi: 10.7498/aps.56.3759
    [13] 龚春娟, 胡雄伟. 遗传算法优化设计三角晶格光子晶体. 物理学报, 2007, 56(2): 927-932. doi: 10.7498/aps.56.927
    [14] 赵知劲, 郑仕链, 尚俊娜, 孔宪正. 基于量子遗传算法的认知无线电决策引擎研究. 物理学报, 2007, 56(11): 6760-6766. doi: 10.7498/aps.56.6760
    [15] 钟会林, 吴福根, 姚立宁. 遗传算法在二维声子晶体带隙优化中的应用. 物理学报, 2006, 55(1): 275-280. doi: 10.7498/aps.55.275
    [16] 王东风. 基于遗传算法的统一混沌系统比例-积分-微分控制. 物理学报, 2005, 54(4): 1495-1499. doi: 10.7498/aps.54.1495
    [17] 吴忠强, 奥顿, 刘坤. 基于遗传算法的混沌系统模糊控制. 物理学报, 2004, 53(1): 21-24. doi: 10.7498/aps.53.21
    [18] 张静娟, 姬扬, 姚德成, 陈俊本. 遗传算法在激光束整形中的应用. 物理学报, 1996, 45(5): 789-795. doi: 10.7498/aps.45.789
    [19] 任朗. 线形天线阵的单位圆上零点分布的一个普遍函数. 物理学报, 1962, 18(9): 449-466. doi: 10.7498/aps.18.449
    [20] 任朗, 卢明儒. 线形天线阵辐射图形中旁瓣的减小. 物理学报, 1961, 17(12): 592-599. doi: 10.7498/aps.17.592
计量
  • 文章访问数:  6120
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-15
  • 修回日期:  2014-12-26
  • 刊出日期:  2015-06-05

/

返回文章
返回