搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壁面材质和温度场对熔融硅润湿角的影响

许多 丁建宁 袁宁一 张忠强 程广贵 郭立强 凌智勇

引用本文:
Citation:

壁面材质和温度场对熔融硅润湿角的影响

许多, 丁建宁, 袁宁一, 张忠强, 程广贵, 郭立强, 凌智勇

Effect of temperature field and different walls on the wetting angle of molten silicon

Xu Duo, Ding Jian-Ning, Yuan Ning-Yi, Zhang Zhong-Qiang, Chen Guang-Gui, Guo Li-Qiang, Ling Zhi-Yong
PDF
导出引用
  • 本文建立了毛细模型, 采用微流动两相流水平集法计算了熔融态硅液与壁面的润湿角, 以人造金刚石作为壁面材料的计算结果与实验结果进行比较, 验证了该模型和计算方法的正确性. 在此基础上, 分别选用碳化硅、石墨和人造金刚石作为壁面材料, 探讨了不同壁面材料表面张力和壁面黏附力对润湿角的影响规律. 结果发现, 相同温度下的毛细力作用使得熔融硅液出现起伏上升现象; 润湿角均有不同程度的减小然后增大, 最终趋于稳定; 初始阶段, 由于气/熔融硅液表面张力与气/壁面表面张力之差变化较大, 液面起伏波动较大; 随后趋于稳定上升. 同时发现石墨作为壁面材料时, 以上变化更易趋于稳定. 该研究为熔体中生长晶体硅获得更稳定的生长环境提供了理论依据.
    A capillary model is developed for calculating the wetting angle of molten silicon on different walls by using the microfluidic two-phase flow level set method and studying the characteristics of the rising process. A mathematical model formulation rigorously accounts for the mass and momentum conservation by using the improved Navier-Stokes equation and considering the Marangoni effect. Compared with the experimental data, the change of the wetting angle on the chemical vapor deposition (CVD) diamond wall indicates the grids independence and the validity of the numerical algorithm. We also discuss the influence of surface tension, and Marangoni stress induced by the gradient of surface tension coefficient, and wall adhesion to the change of wetting angle for three different walls, which include SiC wall, graphite wall, and CVD diamond wall, at different temperatures (1683-1873 K). Result shows that at the same temperature, the thermal-capillary effects that induce the molten silicon to undulation are raised. The wetting angle is reduced after first being increased and finally stabilized. At the initial stage, the fluctuation of the liquid-air interface is volatile due to the large changes of the liquid-air and the wall-air surface tensions, and subsequently, the fluctuation tends to be stable while the wetting angle is close to a fixed value. It is also found that with the graphite wall, these changes are more likely to be stable. This research provides a theoretical guide to obtain a stable growth environment for silicon belt fabricated from the molten silicon.
    • 基金项目: 国家自然科学基金重点项目(批准号:51335002)、国家自然科学基金(批准号:11472117)和江苏高校优势学科建设工程资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51335002), the National Natural Science Foundation of China (Grant No. 11472117), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
    [1]

    Qian J, Zerda T W, He D, Daemen L, Zhao Y 2003 Journal of Materials Research 18 1173

    [2]

    Ekimov E A, Gavriliuk A G, Palosz B, GierlotkaS, Dluzewski P, Tatianin E, Kluev Y, Naletov A M, Presz A 2000 Applied Physics Letters 77 954

    [3]

    Xu S H, Zhou H W, Wang C X, Wang L W, Sun Z W 2013 Acta Phys. Sin. 62 134702 (in Chinese) [徐升华, 周宏伟, 王彩霞, 王林伟, 孙祉伟 2013 物理学报 62 134702]

    [4]

    Yamamoto Y, Tokieda K, Wakimoto T, Ito T, Katoh K 2014 International Journal of Multiphase Flow 59 106

    [5]

    Li Y Q, Liu L, Zhang C H, Duan L, Kang Q 2013 Acta Phys. Sin. 62 024701 (in Chinese) [李永强, 刘玲, 张晨辉, 段俐, 康琦 2013 物理学报 62 024701]

    [6]

    Messmer B, Lemee T, Ikebukuro K, Ueno I, Narayanan R 2014 International Journal of Heat and Mass Transfer 78 1060

    [7]

    Daggolu P, Yeckel A, Bleil C E, Derby J J 2012 Journal of Crystal Growth 355 129

    [8]

    Sasaki H, Tokizaki E, Huang X M 1995 Japanese journal of applied physics 34 3432

    [9]

    Sedlmeier F, Janecek J, Sendner C, Bocquet L, Netz R R, Horinek D 2008 Biointerphases 3 FC23

    [10]

    Landau L D, Lifshitz E M (translated by Li Z) 2013 Fluid Mechanics (Beijing:Higher Education Press) pp267-269 (in Chinese) [朗道, 栗夫席兹著(李植译) 2013 流体动力学(第五版)(北京:高等教育出版社)第267-269页]

    [11]

    Peng L, Li Y R, Zeng D L 2004 JournaI of Chongging University 27 60 (in Chinese) [彭岚, 李友荣, 曾丹苓 2004 重庆大学学报:自然科学版 27 60]

    [12]

    Peng L, Zhang W, Li X R, Meng H Y 2011 Journal of Synthetic Crystals 40 556 (in Chinese) [彭岚, 张伟, 李友荣, 孟海泳 2011 人工晶体学报 40 556]

    [13]

    Wang C X, Xu S H, Sun Z W, Hu W R 2010 International Journal of Heat and Mass Transfer 53 1801

    [14]

    Mlungwane K, Sigalas I, Herrmann M, Rodríguez M 2009 Ceramics International 35 2435

    [15]

    Li Y Q, Liu L 2014 Acta Phys. Sin. 63 214704 (in Chinese) [李永强, 刘玲 2014 物理学报 63 214704]

    [16]

    Hitoshi S, Eiji T, Kazutaka T, Shigeyuki K 1994 Jpn. J. Appl. Phys. 33 6078

    [17]

    Huang X M 1997 Physics 26 37 (in Chinese) [黄新明1997 物理 26 37]

    [18]

    Rowlinson J, Widom B 1982 Molecular Theory of Capillarity (Oxford:Oxford University Press) p86

    [19]

    Li Y R, Deng N B, Wu S Y, Peng L, Li M W 2005 Chinese Journal of Materials Research 19 395 (in Chinese) [李友荣, 邓努波, 吴双应, 彭岚, 李明伟 2005 材料研究学报 19 395]

    [20]

    Son G H 2014 International Communications in Heat and Mass Transfer 58 156

    [21]

    Daggolu P 2013 Ph. D. Dissertation (Minnesota:University of Minnesota)

  • [1]

    Qian J, Zerda T W, He D, Daemen L, Zhao Y 2003 Journal of Materials Research 18 1173

    [2]

    Ekimov E A, Gavriliuk A G, Palosz B, GierlotkaS, Dluzewski P, Tatianin E, Kluev Y, Naletov A M, Presz A 2000 Applied Physics Letters 77 954

    [3]

    Xu S H, Zhou H W, Wang C X, Wang L W, Sun Z W 2013 Acta Phys. Sin. 62 134702 (in Chinese) [徐升华, 周宏伟, 王彩霞, 王林伟, 孙祉伟 2013 物理学报 62 134702]

    [4]

    Yamamoto Y, Tokieda K, Wakimoto T, Ito T, Katoh K 2014 International Journal of Multiphase Flow 59 106

    [5]

    Li Y Q, Liu L, Zhang C H, Duan L, Kang Q 2013 Acta Phys. Sin. 62 024701 (in Chinese) [李永强, 刘玲, 张晨辉, 段俐, 康琦 2013 物理学报 62 024701]

    [6]

    Messmer B, Lemee T, Ikebukuro K, Ueno I, Narayanan R 2014 International Journal of Heat and Mass Transfer 78 1060

    [7]

    Daggolu P, Yeckel A, Bleil C E, Derby J J 2012 Journal of Crystal Growth 355 129

    [8]

    Sasaki H, Tokizaki E, Huang X M 1995 Japanese journal of applied physics 34 3432

    [9]

    Sedlmeier F, Janecek J, Sendner C, Bocquet L, Netz R R, Horinek D 2008 Biointerphases 3 FC23

    [10]

    Landau L D, Lifshitz E M (translated by Li Z) 2013 Fluid Mechanics (Beijing:Higher Education Press) pp267-269 (in Chinese) [朗道, 栗夫席兹著(李植译) 2013 流体动力学(第五版)(北京:高等教育出版社)第267-269页]

    [11]

    Peng L, Li Y R, Zeng D L 2004 JournaI of Chongging University 27 60 (in Chinese) [彭岚, 李友荣, 曾丹苓 2004 重庆大学学报:自然科学版 27 60]

    [12]

    Peng L, Zhang W, Li X R, Meng H Y 2011 Journal of Synthetic Crystals 40 556 (in Chinese) [彭岚, 张伟, 李友荣, 孟海泳 2011 人工晶体学报 40 556]

    [13]

    Wang C X, Xu S H, Sun Z W, Hu W R 2010 International Journal of Heat and Mass Transfer 53 1801

    [14]

    Mlungwane K, Sigalas I, Herrmann M, Rodríguez M 2009 Ceramics International 35 2435

    [15]

    Li Y Q, Liu L 2014 Acta Phys. Sin. 63 214704 (in Chinese) [李永强, 刘玲 2014 物理学报 63 214704]

    [16]

    Hitoshi S, Eiji T, Kazutaka T, Shigeyuki K 1994 Jpn. J. Appl. Phys. 33 6078

    [17]

    Huang X M 1997 Physics 26 37 (in Chinese) [黄新明1997 物理 26 37]

    [18]

    Rowlinson J, Widom B 1982 Molecular Theory of Capillarity (Oxford:Oxford University Press) p86

    [19]

    Li Y R, Deng N B, Wu S Y, Peng L, Li M W 2005 Chinese Journal of Materials Research 19 395 (in Chinese) [李友荣, 邓努波, 吴双应, 彭岚, 李明伟 2005 材料研究学报 19 395]

    [20]

    Son G H 2014 International Communications in Heat and Mass Transfer 58 156

    [21]

    Daggolu P 2013 Ph. D. Dissertation (Minnesota:University of Minnesota)

  • [1] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231956
    [2] 李森清, 张肖, 林机. 熔融耦合器中耦合模式与新型孤子结构. 物理学报, 2022, 71(23): 234207. doi: 10.7498/aps.71.20221273
    [3] 于天林, 凡凤仙. 竖直振动激励下颗粒毛细上升行为研究. 物理学报, 2022, 71(10): 104501. doi: 10.7498/aps.71.20212333
    [4] 宋庆功, 王丽杰, 朱燕霞, 康建海, 顾威风, 王明超, 刘志锋. 硅和钇双掺杂对γ-TiAl基合金稳定性和抗氧化性的影响. 物理学报, 2019, 68(19): 196101. doi: 10.7498/aps.68.20190490
    [5] 程广贵, 张忠强, 丁建宁, 袁宁一, 许多. 石墨表面熔融硅的润湿行为研究. 物理学报, 2017, 66(3): 036801. doi: 10.7498/aps.66.036801
    [6] 王超, 刘骋远, 胡元萍, 刘志宏, 马建峰. 社交网络中信息传播的稳定性研究. 物理学报, 2014, 63(18): 180501. doi: 10.7498/aps.63.180501
    [7] 杨青, 杜广庆, 陈烽, 吴艳敏, 欧燕, 陆宇, 侯洵. 时间整形飞秒激光诱导熔融硅表面纳米周期条纹的电子动力学研究. 物理学报, 2014, 63(4): 047901. doi: 10.7498/aps.63.047901
    [8] 李秀平, 王善进, 陈琼, 罗诗裕. 参数激励与晶体摆动场辐射的稳定性. 物理学报, 2013, 62(22): 224102. doi: 10.7498/aps.62.224102
    [9] 李春曦, 姜凯, 叶学民. 含活性剂液膜去润湿演化的稳定性特征. 物理学报, 2013, 62(23): 234702. doi: 10.7498/aps.62.234702
    [10] 王参军, 李江城, 梅冬成. 噪声对集合种群稳定性的影响. 物理学报, 2012, 61(12): 120506. doi: 10.7498/aps.61.120506
    [11] 张娟, 周志刚, 石玉仁, 杨红娟, 段文山. 修正KP方程及其孤波解的稳定性. 物理学报, 2012, 61(13): 130401. doi: 10.7498/aps.61.130401
    [12] 宋健, 李锋, 邓开明, 肖传云, 阚二军, 陆瑞锋, 吴海平. 单层硅Si6H4Ph2的稳定性和电子结构密度泛函研究. 物理学报, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [13] 仲生仁. 尘埃等离子体中非线性波的叠加效应及稳定性问题. 物理学报, 2010, 59(4): 2178-2181. doi: 10.7498/aps.59.2178
    [14] 王晓秋, 王保林. 嵌入La和Gd原子的Si24笼团簇的稳定性. 物理学报, 2008, 57(10): 6259-6264. doi: 10.7498/aps.57.6259
    [15] 欧阳玉, 彭景翠, 王 慧, 易双萍. 碳纳米管的稳定性研究. 物理学报, 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [16] 邹继军, 常本康, 杨 智, 高 频, 乔建良, 曾一平. GaAs光电阴极在不同强度光照下的稳定性. 物理学报, 2007, 56(10): 6109-6113. doi: 10.7498/aps.56.6109
    [17] 李 娟, 吴春亚, 赵淑云, 刘建平, 孟志国, 熊绍珍, 张 芳. 微晶硅薄膜晶体管稳定性研究. 物理学报, 2006, 55(12): 6612-6616. doi: 10.7498/aps.55.6612
    [18] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性. 物理学报, 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [19] 张 凯, 冯 俊. 相对论Birkhoff系统的对称性与稳定性. 物理学报, 2005, 54(7): 2985-2989. doi: 10.7498/aps.54.2985
    [20] 欧阳世根, 江德生, 佘卫龙. 复色光伏孤子的稳定性. 物理学报, 2004, 53(9): 3033-3041. doi: 10.7498/aps.53.3033
计量
  • 文章访问数:  4807
  • PDF下载量:  312
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-03
  • 修回日期:  2014-12-26
  • 刊出日期:  2015-06-05

/

返回文章
返回