搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变换光学的椭圆形透明聚集器的设计研究

汪会波 罗孝阳 董建峰

引用本文:
Citation:

基于变换光学的椭圆形透明聚集器的设计研究

汪会波, 罗孝阳, 董建峰

Design and study of the elliptically cylindrical transparent concentrator based on transformation optics

Wang Hui-Bo, Luo Xiao-Yang, Dong Jian-Feng
PDF
导出引用
  • 基于麦克斯韦方程组在不同坐标系下具有形式不变性以及变换光学理论, 通过设计材料的本构参数(介电常数和磁导率)来引导电磁波的传播, 提出了具有电磁透明和电磁聚集两种功能的新型电磁器件-椭圆形透明聚集器的设计方法. 电磁波透明体不会阻挡电磁波的传播并且能够与斗篷内部进行交互; 电磁波聚集器是当电磁波入射到该装置上时, 电磁波能够被设计的装置按照要求集中到一个区域或者一个点, 实现电磁波能量的集中. 本文利用压缩变换和扩展变换推导出了这种电磁器件中各层的相对介电常数和相对磁导率的张量表达式, 并利用基于有限元算法的电磁仿真软件对该电磁器件进行了全波仿真验证, 得到了入射波从各个不同方向入射时磁场z 分量的分布图, 仿真结果证实了该设计方法和电磁参数的正确性. 最后还讨论了电磁器件存在损耗时的情况, 当损耗逐渐增大时, 器件的功能在一定程度上受到了削弱. 本文的设计方法为其他新型电磁器件的设计提供了一种新的思路.
    The design of a novel elliptically cylindrical transparent concentrator with functions of both electromagnetic transparency and electromagnetic concentration is put forward based on the form invariance of Maxwell’s equations in different coordinate transformation and transformation optics theory, and through the design of material constitutive parameters (permittivity and permeability) to guide the electromagnetic wave propagation. The electromagnetic wave transparent body does not prevent the transmission of electromagnetic waves that can interact in the cloak. An electromagnetic wave concentrator is an electromagnetic device that controls the electromagnetic waves to focus on an area or at a point to realize the electromagnetic wave energy concentration according to the requirement when the electromagnetic waves are incident on the device. In this paper, the expressions of the relative permittivity and permeability tensors in every layer of the electromagnetic device are derived by compression transformation and extension transformation. Then full-wave simulations for the electromagnetic device are performed by using finite-element software. The distributions of z-component of the magnetic field for the electromagnetic waves incident from different directions are obtained. Simulation results confirm the validity of the design method and the constitutive parameter tensors. Finally, effect of electromagnetic loss on the performance of the device is also discussed. To a certain extent, the function of the device will be weakened when the electromagnetic loss increases gradually. The design method proposed in this paper provides a new approach that can be used to design other novel electromagnetic devices.
    • 基金项目: 国家自然科学基金(批准号: 61475079)、宁波市新型光电功能材料及器件创新团队(批准号: 2009B21007) 和宁波大学王宽诚幸福基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61475079), the Innovative Research Team Program of Ningbo, China (Grant No. 2009B21007), and the K. C. Wong Magna Fund in Ningbo University, China.
    [1]

    Pendry J B, Schuring D, Smith D R 2006 Science 312 1780

    [2]

    Leonhardt U 2006 Science 312 1777

    [3]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105

    [4]

    Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R, Pendry J B 2008 Photonic. Nanostruct. 6 87

    [5]

    Yu G X, Cui T J, Jiang W 2009 J. Infrared Millim. TE. 30 633

    [6]

    Luo Y, Chen H S, Zhang J J, Ran L X, Kong J A 2008 Phys. Rev. B 77 125127

    [7]

    Chen H Y, Hou B, Chen S Y, Ao X Y, Wen W J, Chan C T 2009 Phys. Rev. Lett. 102 183903

    [8]

    Kadic M, Guenneau S, Enoch S 2010 Opt. Express 18 12027

    [9]

    Yang C F,Yang J J, Huang M, ShiJ H, Peng J H 2010 Radioengineering 19 136

    [10]

    Mei Z L, Niu T M, Bai J, Cui T J 2010 J. Appl. Phys. 107 124908

    [11]

    Mei Z L, Xu Y L, Bai J, Cui T J 2012 Opt Express 20 16955

    [12]

    Li T H, Huang M, Yang J J, Xie R S, Yu J 2012 Int J. RF. Microw. C. E. 22 522

    [13]

    Wang W, Lin L, Ma J X, Wang C T, Cui J H, Du C L, Luo X G 2008 Opt. Express 16 11431

    [14]

    Jiang W X, Cui T J, Cheng Q, Chin J Y, Yang X M, Liu R, Smith D R 2008 Appl. Phys. Lett. 92 264101

    [15]

    Yaghjian A D, Maci S 2008 New J. Phys. 10 115022

    [16]

    Yang J J, Huang M, Yang C F, Xiao Z, Peng J H 2009 Opt. Express 17 19656

    [17]

    Yang C F, Yang J J, Huang M, Peng J H, Niu W W 2010 J. Opt. Soc. Am. A 27 1994

    [18]

    Zhang K, Wu Q, Fu J H, Li L W 2011 J. Opt. Soc. Am. B 28 1573

    [19]

    Wang S Y, Yu B, Liu S B, Bian B R 2013 J Opt Soc Am. A 30 1563

    [20]

    Liu G C, Li C, Zhang C C, Sun Z Y, Fang G Y 2013 Phys. Rev. B 87 155125

    [21]

    Chen Y, Zhu C, Huo F F, Li K, Li L, Kong L H, Liang C H 2014 Microw. Opt. Techn. Let. 56 1776

    [22]

    Liu G C, Li C, Shao J J, Fang G Y 2014 Acta Phys. Sin. 63 154102 (in Chinese) [刘国昌, 李超, 邵金进, 方广有 2014 物理学报 63 154102]

    [23]

    Milton G, Briane M, Willis J 2006 New J. Phys. 8 248.

  • [1]

    Pendry J B, Schuring D, Smith D R 2006 Science 312 1780

    [2]

    Leonhardt U 2006 Science 312 1777

    [3]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105

    [4]

    Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R, Pendry J B 2008 Photonic. Nanostruct. 6 87

    [5]

    Yu G X, Cui T J, Jiang W 2009 J. Infrared Millim. TE. 30 633

    [6]

    Luo Y, Chen H S, Zhang J J, Ran L X, Kong J A 2008 Phys. Rev. B 77 125127

    [7]

    Chen H Y, Hou B, Chen S Y, Ao X Y, Wen W J, Chan C T 2009 Phys. Rev. Lett. 102 183903

    [8]

    Kadic M, Guenneau S, Enoch S 2010 Opt. Express 18 12027

    [9]

    Yang C F,Yang J J, Huang M, ShiJ H, Peng J H 2010 Radioengineering 19 136

    [10]

    Mei Z L, Niu T M, Bai J, Cui T J 2010 J. Appl. Phys. 107 124908

    [11]

    Mei Z L, Xu Y L, Bai J, Cui T J 2012 Opt Express 20 16955

    [12]

    Li T H, Huang M, Yang J J, Xie R S, Yu J 2012 Int J. RF. Microw. C. E. 22 522

    [13]

    Wang W, Lin L, Ma J X, Wang C T, Cui J H, Du C L, Luo X G 2008 Opt. Express 16 11431

    [14]

    Jiang W X, Cui T J, Cheng Q, Chin J Y, Yang X M, Liu R, Smith D R 2008 Appl. Phys. Lett. 92 264101

    [15]

    Yaghjian A D, Maci S 2008 New J. Phys. 10 115022

    [16]

    Yang J J, Huang M, Yang C F, Xiao Z, Peng J H 2009 Opt. Express 17 19656

    [17]

    Yang C F, Yang J J, Huang M, Peng J H, Niu W W 2010 J. Opt. Soc. Am. A 27 1994

    [18]

    Zhang K, Wu Q, Fu J H, Li L W 2011 J. Opt. Soc. Am. B 28 1573

    [19]

    Wang S Y, Yu B, Liu S B, Bian B R 2013 J Opt Soc Am. A 30 1563

    [20]

    Liu G C, Li C, Zhang C C, Sun Z Y, Fang G Y 2013 Phys. Rev. B 87 155125

    [21]

    Chen Y, Zhu C, Huo F F, Li K, Li L, Kong L H, Liang C H 2014 Microw. Opt. Techn. Let. 56 1776

    [22]

    Liu G C, Li C, Shao J J, Fang G Y 2014 Acta Phys. Sin. 63 154102 (in Chinese) [刘国昌, 李超, 邵金进, 方广有 2014 物理学报 63 154102]

    [23]

    Milton G, Briane M, Willis J 2006 New J. Phys. 8 248.

  • [1] 刘建基, 刘甲琛, 张国权. 基于电磁感应透明效应的光学图像加减. 物理学报, 2023, 72(9): 094201. doi: 10.7498/aps.72.20221560
    [2] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收. 物理学报, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [3] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [4] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性. 物理学报, 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [5] 谭康伯, 路宏敏, 官乔, 张光硕, 陈冲冲. 电磁诱导透明暗孤子的耗散变分束缚分析. 物理学报, 2018, 67(6): 064207. doi: 10.7498/aps.67.20172567
    [6] 邓瑞婕, 闫智辉, 贾晓军. 基于电磁诱导透明机制的压缩光场量子存储. 物理学报, 2017, 66(7): 074201. doi: 10.7498/aps.66.074201
    [7] 唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国. 纵波光学声子耦合对级联型电磁感应透明半导体量子阱中暗-亮光孤子类型的调控. 物理学报, 2017, 66(3): 034202. doi: 10.7498/aps.66.034202
    [8] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子. 物理学报, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [9] 罗孝阳, 刘道亚, 姚丽芳, 董建峰. 新型椭圆形互补隐身斗篷设计. 物理学报, 2014, 63(8): 084101. doi: 10.7498/aps.63.084101
    [10] 刘国昌, 李超, 邵金进, 方广有. 一种有场旋转和集中功能的新型多功能电磁器件的设计与研究. 物理学报, 2014, 63(15): 154102. doi: 10.7498/aps.63.154102
    [11] 王战, 罗孝阳, 刘锦景, 董建峰. 二维椭圆形散射转移斗篷的设计研究. 物理学报, 2013, 62(2): 024101. doi: 10.7498/aps.62.024101
    [12] 杨丽君, 马立金, 吕东启, 张连水. 四能级系统中相位控制电磁诱导透明研究. 物理学报, 2011, 60(10): 104205. doi: 10.7498/aps.60.104205
    [13] 吕纯海, 谭磊, 谭文婷. 压缩真空中的电磁诱导透明. 物理学报, 2011, 60(2): 024204. doi: 10.7498/aps.60.024204
    [14] 李晓莉, 张连水, 杨宝柱, 杨丽君. 闭合Λ型4能级系统中的电磁诱导透明和电磁诱导吸收. 物理学报, 2010, 59(10): 7008-7014. doi: 10.7498/aps.59.7008
    [15] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收. 物理学报, 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [16] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构. 物理学报, 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [17] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [18] 张维佳, 王天民, 崔 敏, 戎霭伦. 有ITO透明导电膜的平面分层介质系统的电磁波性能理论研究. 物理学报, 2006, 55(3): 1295-1300. doi: 10.7498/aps.55.1295
    [19] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究. 物理学报, 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
    [20] 罗振飞, 徐至展, 陈荣清. 电磁引起透明:强信号、反对称失谐情形. 物理学报, 1994, 43(3): 389-394. doi: 10.7498/aps.43.389
计量
  • 文章访问数:  3973
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-13
  • 修回日期:  2015-02-02
  • 刊出日期:  2015-08-05

/

返回文章
返回