搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于参数切换算法的混沌系统吸引子近似及其电路设计

罗少轩 何博侠 乔爱民 王艳春

引用本文:
Citation:

基于参数切换算法的混沌系统吸引子近似及其电路设计

罗少轩, 何博侠, 乔爱民, 王艳春

Approximations of chaotic attractors and its circuit design based on the parameter switching algorithm

Luo Shao-Xuan, He Bo-Xia, Qiao Ai-Min, Wang Yan-Chun
PDF
导出引用
  • 基于参数切换算法和离散混沌系统, 设计一种新的混沌系统参数切换算法, 给出了两算法的原理. 采用混沌吸引子相图观测法, 研究了不同算法下统一混沌系统和Rössler混沌系统参数切换结果, 最后引入方波发生器, 设计了Rössler混沌系统参数切换电路. 结果表明, 采用参数切换算法可以近似出指定参数下的系统, 其吸引子与该参数下吸引子一致; 基于离散系统的参数切换结果更为复杂, 当离散序列分布均匀时, 只可近似得到指定参数下的系统; 相比传统切换混沌电路, 参数切换电路不用修改原有系统电路结构, 设计更为简单, 输出结果受方波频率影响, 通过加入合适频率的方波发生器, 数值仿真与电路仿真结果一致.
    Based on the parameter switching algorithm and the discrete chaotic system, a new chaotic system based parameter switching algorithm is proposed. The principles of parameter switching algorithm and chaotic system based parameter switching algorithm are presented in detail by means of flow chart and step description. By applying phase diagram observation method, chaotic attractor approximation of the unified chaotic system is investigated based on parameter switching algorithm and chaotic system based parameter switching algorithm. It shows that chaos can be obtained by switching two periodic parameters and periodic state can be observed by switching two chaotic parameters. Thus the formulas chaos+ chaos = periodic and period+ period = chaos are proved to be workable in this paper. Chaotic attractor approximation of Rössler chaotic system is also studied by employing the two switching methods. Two cases are investigated. Firstly, a chaotic switching system is obtained by switching a chaotic parameter and a periodic parameter. Then a more complex switching scheme is carried out. Periodic system is switched by two periodic parameters and a chaotic parameter. So, the formulas chaos+ periodic = chaos and periodic+ period+ chaos = periodic are proved to be workable. It shows that the switching system is the approximation of the original system under specified parameter, and the attractor is in accordance with the attractor of the targeting system. The outputs of the Logistic map based parameter switching algorithm are more complex than those of existing parameter switching algorithm. As the distribution of logistic map is not uniform, the approximate attractor does not consist of the targeting system and shows more complicated structure. But approximate attractors can be obtained when the distribution of discrete sequence is uniform. In addition, the chaotic map based parameter switching algorithm has larger secret key space since it has the initial values and parameter of the chaotic map. Finally, the parameter switching circuit of Rössler system is designed by introducing a square wave generator. Compared with the traditional switching chaotic circuit (switching between different systems), the design of parameter switch circuit is simpler as it does not need to change the original structure of the system. The output is affected by the frequency of the square wave. By adding an appropriate frequency square wave generator, the circuit simulation agrees with the numerical simulation. It presents a theoretical and experimental base for the practical application of the parameter switching chaotic systems.
    • 基金项目: 国家自然科学基金 (批准号: 51175276)、安徽省高等学校省级自然科学重点研究项目(批准号: KJ2013Z193)和安徽省高等学校优秀青年人才基金 (批准号: 2012SQRL212)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51175276), the Key Program of the Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. KJ2013Z193), and the Foundation for Outstanding Young Teachers in University of Anhui Province, China (Grant No. 2012SQRL212).
    [1]

    Duan S M, Wu G Z 2013 Appl. Mech. Mater. 392 232

    [2]

    Xiao X, Zhou L, Zhang Z 2014 Commun. Nonl. Sci. Num. Simul. 19 2039

    [3]

    Wang Z, Huang X, Li Y X 2013 Chin. Phys. B 22 010504

    [4]

    Jamal S S, Shah T, Hussain I 2013 Nonl. Dyn. 73 1469

    [5]

    Zhang Y, Chen T L 2006 J. Electr. Sci. Tech. 34 763 (in Chinese) [张勇, 陈天麒 2006 电子科技大学学报 34 763]

    [6]

    Corporation H P 2014 J. Nonl. Dyn. 2014 918586

    [7]

    Sun C C, Xu Q C, Ying S 2013 Chin. Phys. B 22 030507

    [8]

    Liu Y Z, Jiang C S, Ling C S 2007 Acta Phys. Sin. 56 3107 (in Chinese) [刘扬正, 姜长生, 林长圣 2007 物理学报 56 3107]

    [9]

    Liu Y Z, Jiang C S, Ling C S 2007 Acta Phys. Sin. 56 707 (in Chinese) [刘扬正, 姜长生, 林长圣 2007 物理学报 56 707]

    [10]

    Qi A, Han C, Wang G 2010 Communications, Circuits and Systems (ICCCAS) International Conference on. IEEE 2010 p417

    [11]

    Chen Z Y, Xue Z H, Zhang C 2014 Acta Phys. Sin. 63 010504 (in Chinese) [陈章耀, 雪增红, 张春 2014 物理学报 63 010504]

    [12]

    Almeida J, Peralta-Salas D, Romera M 2005 Physica D 200 124

    [13]

    Danca M F 2013 Commu. Nonl. Sci. Num. Simul. 18 500

    [14]

    Danca M F, Romera M, Pastor G 2012 Nonl. Dyn. 67 2317

    [15]

    Mao Y, Tang W K S, Danca M 2010 Appl. Math. Comp. 217 355

    [16]

    Foias C, Jolly M S 1995 Nonlinearity 8 295

    [17]

    Lu J, Wu X, Han X, L J 2004 Phys. Lett. A 329 327

    [18]

    Rössler O E 1976 Phys. Lett. A 57 397

  • [1]

    Duan S M, Wu G Z 2013 Appl. Mech. Mater. 392 232

    [2]

    Xiao X, Zhou L, Zhang Z 2014 Commun. Nonl. Sci. Num. Simul. 19 2039

    [3]

    Wang Z, Huang X, Li Y X 2013 Chin. Phys. B 22 010504

    [4]

    Jamal S S, Shah T, Hussain I 2013 Nonl. Dyn. 73 1469

    [5]

    Zhang Y, Chen T L 2006 J. Electr. Sci. Tech. 34 763 (in Chinese) [张勇, 陈天麒 2006 电子科技大学学报 34 763]

    [6]

    Corporation H P 2014 J. Nonl. Dyn. 2014 918586

    [7]

    Sun C C, Xu Q C, Ying S 2013 Chin. Phys. B 22 030507

    [8]

    Liu Y Z, Jiang C S, Ling C S 2007 Acta Phys. Sin. 56 3107 (in Chinese) [刘扬正, 姜长生, 林长圣 2007 物理学报 56 3107]

    [9]

    Liu Y Z, Jiang C S, Ling C S 2007 Acta Phys. Sin. 56 707 (in Chinese) [刘扬正, 姜长生, 林长圣 2007 物理学报 56 707]

    [10]

    Qi A, Han C, Wang G 2010 Communications, Circuits and Systems (ICCCAS) International Conference on. IEEE 2010 p417

    [11]

    Chen Z Y, Xue Z H, Zhang C 2014 Acta Phys. Sin. 63 010504 (in Chinese) [陈章耀, 雪增红, 张春 2014 物理学报 63 010504]

    [12]

    Almeida J, Peralta-Salas D, Romera M 2005 Physica D 200 124

    [13]

    Danca M F 2013 Commu. Nonl. Sci. Num. Simul. 18 500

    [14]

    Danca M F, Romera M, Pastor G 2012 Nonl. Dyn. 67 2317

    [15]

    Mao Y, Tang W K S, Danca M 2010 Appl. Math. Comp. 217 355

    [16]

    Foias C, Jolly M S 1995 Nonlinearity 8 295

    [17]

    Lu J, Wu X, Han X, L J 2004 Phys. Lett. A 329 327

    [18]

    Rössler O E 1976 Phys. Lett. A 57 397

  • [1] 路永坤. 参数不确定统一混沌系统的鲁棒分数阶比例-微分控制. 物理学报, 2015, 64(5): 050503. doi: 10.7498/aps.64.050503
    [2] 路永坤. 受扰统一混沌系统的主动自适应模糊积分滑模控制. 物理学报, 2012, 61(22): 220504. doi: 10.7498/aps.61.220504
    [3] 马新东, 毕勤胜. 切换电路系统的复杂行为及其机理. 物理学报, 2012, 61(24): 240506. doi: 10.7498/aps.61.240506
    [4] 黄丽莲, 何少杰. 分数阶状态空间系统的稳定性分析及其在分数阶混沌控制中的应用. 物理学报, 2011, 60(4): 044703. doi: 10.7498/aps.60.044703
    [5] 郭会军, 刘丁, 赵光宙. 受扰统一混沌系统基于RBF网络的主动滑模控制. 物理学报, 2011, 60(1): 010510. doi: 10.7498/aps.60.010510
    [6] 胡建兵, 章国安, 赵灵冬, 曾金全. 间歇同步分数阶统一混沌系统. 物理学报, 2011, 60(6): 060504. doi: 10.7498/aps.60.060504
    [7] 刘扬正, 林长圣, 李心朝. 切换统一混沌系统族. 物理学报, 2011, 60(4): 040505. doi: 10.7498/aps.60.040505
    [8] 吴志强, 孙立明. 基于Washout滤波器的Rössler系统Hopf分岔控制. 物理学报, 2011, 60(5): 050504. doi: 10.7498/aps.60.050504
    [9] 陈志旺, 刘文龙. Rössler超混沌系统多变量广义预测控制快速算法. 物理学报, 2011, 60(5): 050506. doi: 10.7498/aps.60.050506
    [10] 朱少平, 钱富才, 刘丁. 不确定动态混沌系统的最优控制. 物理学报, 2010, 59(4): 2250-2255. doi: 10.7498/aps.59.2250
    [11] 张若洵, 杨洋, 杨世平. 分数阶统一混沌系统的自适应同步. 物理学报, 2009, 58(9): 6039-6044. doi: 10.7498/aps.58.6039
    [12] 李 农, 李建芬. 基于单驱动变量的混沌广义投影同步及在保密通信中的应用. 物理学报, 2008, 57(10): 6093-6098. doi: 10.7498/aps.57.6093
    [13] 单 梁, 梁 彦, 李 军, 王执铨. 统一混沌系统的状态Riccati方程同步法. 物理学报, 2007, 56(8): 4366-4371. doi: 10.7498/aps.56.4366
    [14] 高 心, 刘兴文. 统一混沌系统的时延模糊控制. 物理学报, 2007, 56(1): 84-90. doi: 10.7498/aps.56.84
    [15] 马铁东, 张化光, 王智良. 一类参数不确定统一混沌系统的脉冲滞后同步. 物理学报, 2007, 56(7): 3796-3802. doi: 10.7498/aps.56.3796
    [16] 闵富红, 王执铨. 统一混沌系统的耦合同步. 物理学报, 2005, 54(9): 4026-4030. doi: 10.7498/aps.54.4026
    [17] 王东风. 基于遗传算法的统一混沌系统比例-积分-微分控制. 物理学报, 2005, 54(4): 1495-1499. doi: 10.7498/aps.54.1495
    [18] 刘 杰, 陈士华, 陆君安. 统一混沌系统的投影同步与控制. 物理学报, 2003, 52(7): 1595-1599. doi: 10.7498/aps.52.1595
    [19] 陶朝海, 陆君安. 统一混沌系统的控制. 物理学报, 2003, 52(2): 281-284. doi: 10.7498/aps.52.281
    [20] 陶朝海, 陆君安, 吕金虎. 统一混沌系统的反馈同步. 物理学报, 2002, 51(7): 1497-1501. doi: 10.7498/aps.51.1497
计量
  • 文章访问数:  4505
  • PDF下载量:  251
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-23
  • 修回日期:  2015-06-08
  • 刊出日期:  2015-10-05

/

返回文章
返回