搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于绝缘体上硅的一种改进的Mach-Zehnder声光调制器

秦晨 余辉 叶乔波 卫欢 江晓清

引用本文:
Citation:

基于绝缘体上硅的一种改进的Mach-Zehnder声光调制器

秦晨, 余辉, 叶乔波, 卫欢, 江晓清

An improved Mach-Zehnder acousto-optic modulator on a silicon-on-insulator platform

Qin Chen, Yu Hui, Ye Qiao-Bo, Wei Huan, Jiang Xiao-Qing
PDF
导出引用
  • 传统的基于绝缘体上硅的Mach-Zehnder (MZ)声光调制器中, 叉指换能器位于两臂的同一侧. 为实现高的调制效率, 声表面波的波峰和波谷分别调制MZ干涉仪的两臂, 这要求控制MZ干涉仪两臂之间的距离为奇数倍声波半波长. 但实际上由于传播过程中衬底材料的变化, 声波波长会变大, 这会导致两臂的间距难以准确设置. 另一方面, 声波在传播过程中经过MZ干涉仪的一臂后会发生衰减, 降低了对另一臂的调制效果, 影响了整体的调制效率. 本文针对这些问题给出了一种解决方案, 把叉指换能器放在MZ波导两臂之间, 确保MZ干涉仪两臂到叉指电极中心距离相等. 采用有限元法, 首先对新提出的结构进行分析, 然后通过声光互作用原理得到了材料的折射率变化; 进而研究了波导类型、波导宽度、氧化锌厚度及叉指对数等因素对声光调制效率的影响, 并对声光调制器的结构参数进行了优化以提高其性能. 基于COMSOL Multiphysics 的仿真结果表明, 当条波导宽度为6 m, 氧化锌只覆盖有叉指电极的部分且厚度为2.2 m, 控制叉指电极数目为50对时, 波导有效折射率变化在驱动电压为1 V时可以达到4.0810-4, 比传统结构提高了12%.
    The interdigital transducer (IDT) of the traditional Mach-Zehnder (MZ) acousto-optic modulator on a silicon-on-insulator (SOI) platform is located outside its two arms. The crest and trough of the surface acoustic wave (SAW) are used to modulate the two arms of the MZ interferometer so as to achieve a high modulation efficiency. Therefore, the distance between the two arms must be odd multiples of half acoustic wavelength. However, since the substrate is usually not uniform, the wavelength of the SAW changes as it transmits through the surface of the device. As a result, the exact distance between the two arms is difficult to choose. On the other hand, the SAW losses a portion of energy after passing through the first arm of the MZ interferometer, so the modulation of the second arm becomes much weaker. To solve these problems, we propose a new structure where its IDT is situated in the middle of the two arms of the MZ interferometer. With this scheme, the two arms of the MZ interferometer are located exactly at the crest and the trough of the SAW, while they are modulated with equal strength. In this paper, we first use the finite element method to simulate the acoustic frequency and the surface displacement of the excited SAW. Then we deduce the refractive index variations of all layers according to their acousto-optic effects. After that, we analyze the influences of different factors on the acousto-optic modulation efficiency, including the type and size of waveguide, the thickness of zinc oxide (ZnO) layer, and the area it covers, the number of electrodes, etc. These parameters are accordingly optimized to enhance the modulation efficiency. Modeling result based on COMSOL Multiphysics indicates that when the width of the strip waveguide is 6 m, the ZnO layer covers only the area under the IDT and has a thickness of 2.2 m, and the number of the electrodes is 50, the effective refractive index variation of the waveguide reaches 4.0810-4 provided that the amplitude of the driving voltage is 1 V. This value is 12% higher than that of the traditional structure.
      通信作者: 余辉, huiyu@zju.edu.cn
    • 基金项目: 国家重点基础研究发展计划 (批准号: 2013CB632105)、国家自然科学基金(批准号: 61177055, 61307074)、浙江省杰出青年科学基金(批准号: LR15F050002)和中央高校基本科研业务费专项资金资助的课题.
      Corresponding author: Yu Hui, huiyu@zju.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB632105), the National Natural Science Foundation of China (Grant Nos. 61177055, 61307074), the Science Fund for Distinguished Young Scholars of Zhejiang, China (Grant No. LR15F050002), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Soref R 2006 IEEE J. Sel. Top. Quantum Electron. 12 1678

    [2]

    Kimerling L C, Ahn D, Apsel A B, Beals M, Carothers D, Chen Y K, Conway T, Gill D M, Grove M, Hong C Y, Lipson M, Liu J, Michel J, Pan D, Patel S S, Pomerene A T, Rasras M, Sparacin D K, Tu K Y, White A E, Wong C W 2006 Proc. SPIE 6125 612502

    [3]

    Arakawa Y, Yasuhiko A, Nakamura T, Urino Y, Fujita T 2013 IEEE Commun. Mag. 51 72

    [4]

    Li Q, Li H O, Tang N, Zhai J H, Song S X 2015 Chin. Phys. B 24 037203

    [5]

    Barretto E C S, Hvam J M 2010 Proc. SPIE 7719 771920

    [6]

    Chen X, Yang Y, Cai H L, Zhou C J, Mohammad A M, Ren T L 2014 Chin. Phys. Lett. 31 124302

    [7]

    Qiu C, Hu T, Wang W J, Yu P, Jiang X Q, Yang J Y 2012 Chin. Phys. Lett. 29 094204

    [8]

    Liao S S, Yang T, Dong J J 2014 Chin. Phys. B 23 073201

    [9]

    Chatterjee M R, Almehmadi F S 2014 Opt. Eng. 53 036108

    [10]

    Teklu A, Declercq N F, McPherson M 2014 J. Acoust. Soc. Am. 136 634

    [11]

    Yan H T, Wang M, Ge Y X, Yu P 2009 Chin. Phys. B 18 02389

    [12]

    Liu C, Pei L, Li Z X, Ning T G, Gao S, Kang Z X, Sun J 2013 Acta Phys. Sin. 62 034208 (in Chinese) [刘超, 裴丽, 李卓轩, 宁提纲, 高嵩, 康泽新, 孙将 2013 物理学报 62 034208]

    [13]

    Weng C C, Zhang X M 2015 Chin. Phys. B 24 014210

    [14]

    Gu H D, Shao Z X, Zheng C Q, Yang J, Chen R T, Gu Z T 2015 SPIE Opto. 9359 93591J

    [15]

    Balakshy V I, Voloshin A S, Molchanov V Y 2015 Ultrasonics 59 102

    [16]

    de Lima Jr M M, Beck M, Hey R, Santos P V 2006 Appl. Phys. Lett. 89 121104

    [17]

    Wang W B, Gu H, He X L, Xuan W P, Chen J K, Wang X Z, Luo J K 2015 Chin. Phys. B 24 057701

    [18]

    Christophe G, Franck C, Eric B, Hideki K 1997 Opt. Lett. 22 1784

    [19]

    Dhring M B, Sigmund O 2009 J. Appl. Phys. 105 083529

    [20]

    Dhring M B, Sigmund O, Jensen J S 2009 Ph. D. Dissertation (Copenhagen: Technical University of Denmark)

    [21]

    Tadesse S A, Li M 2014 Nat. Commun. 5 5402

    [22]

    Pan F 2012 Surface Acoustic Wave Materials and Devices (Beijing: Science Press) pp1, 2 (in Chinese) [潘峰 2012 声表面波材料与器件 (北京: 科学出版社) 第1, 2页]

    [23]

    Nishihara H, Haruna M, Suhara T 1985 Optical Integrated Circuits (New York: McGraw-Hill) pp108-120

    [24]

    Syms R R, Cozens J R 1992 Optical Guided Waves and Devices (New York: McGraw-Hill) pp66-70

    [25]

    Huang M 2003 Int. J. Solids Struct. 40 1615

  • [1]

    Soref R 2006 IEEE J. Sel. Top. Quantum Electron. 12 1678

    [2]

    Kimerling L C, Ahn D, Apsel A B, Beals M, Carothers D, Chen Y K, Conway T, Gill D M, Grove M, Hong C Y, Lipson M, Liu J, Michel J, Pan D, Patel S S, Pomerene A T, Rasras M, Sparacin D K, Tu K Y, White A E, Wong C W 2006 Proc. SPIE 6125 612502

    [3]

    Arakawa Y, Yasuhiko A, Nakamura T, Urino Y, Fujita T 2013 IEEE Commun. Mag. 51 72

    [4]

    Li Q, Li H O, Tang N, Zhai J H, Song S X 2015 Chin. Phys. B 24 037203

    [5]

    Barretto E C S, Hvam J M 2010 Proc. SPIE 7719 771920

    [6]

    Chen X, Yang Y, Cai H L, Zhou C J, Mohammad A M, Ren T L 2014 Chin. Phys. Lett. 31 124302

    [7]

    Qiu C, Hu T, Wang W J, Yu P, Jiang X Q, Yang J Y 2012 Chin. Phys. Lett. 29 094204

    [8]

    Liao S S, Yang T, Dong J J 2014 Chin. Phys. B 23 073201

    [9]

    Chatterjee M R, Almehmadi F S 2014 Opt. Eng. 53 036108

    [10]

    Teklu A, Declercq N F, McPherson M 2014 J. Acoust. Soc. Am. 136 634

    [11]

    Yan H T, Wang M, Ge Y X, Yu P 2009 Chin. Phys. B 18 02389

    [12]

    Liu C, Pei L, Li Z X, Ning T G, Gao S, Kang Z X, Sun J 2013 Acta Phys. Sin. 62 034208 (in Chinese) [刘超, 裴丽, 李卓轩, 宁提纲, 高嵩, 康泽新, 孙将 2013 物理学报 62 034208]

    [13]

    Weng C C, Zhang X M 2015 Chin. Phys. B 24 014210

    [14]

    Gu H D, Shao Z X, Zheng C Q, Yang J, Chen R T, Gu Z T 2015 SPIE Opto. 9359 93591J

    [15]

    Balakshy V I, Voloshin A S, Molchanov V Y 2015 Ultrasonics 59 102

    [16]

    de Lima Jr M M, Beck M, Hey R, Santos P V 2006 Appl. Phys. Lett. 89 121104

    [17]

    Wang W B, Gu H, He X L, Xuan W P, Chen J K, Wang X Z, Luo J K 2015 Chin. Phys. B 24 057701

    [18]

    Christophe G, Franck C, Eric B, Hideki K 1997 Opt. Lett. 22 1784

    [19]

    Dhring M B, Sigmund O 2009 J. Appl. Phys. 105 083529

    [20]

    Dhring M B, Sigmund O, Jensen J S 2009 Ph. D. Dissertation (Copenhagen: Technical University of Denmark)

    [21]

    Tadesse S A, Li M 2014 Nat. Commun. 5 5402

    [22]

    Pan F 2012 Surface Acoustic Wave Materials and Devices (Beijing: Science Press) pp1, 2 (in Chinese) [潘峰 2012 声表面波材料与器件 (北京: 科学出版社) 第1, 2页]

    [23]

    Nishihara H, Haruna M, Suhara T 1985 Optical Integrated Circuits (New York: McGraw-Hill) pp108-120

    [24]

    Syms R R, Cozens J R 1992 Optical Guided Waves and Devices (New York: McGraw-Hill) pp66-70

    [25]

    Huang M 2003 Int. J. Solids Struct. 40 1615

  • [1] 杨士冠, 林鑫, 何俊松, 翟立军, 程林, 吕明豪, 刘虹霞, 张艳, 孙志刚. 并联模型研究双层热电薄膜热电性能. 物理学报, 2023, 72(22): 228401. doi: 10.7498/aps.72.20231259
    [2] 陆梦佳, 恽斌峰. 基于硅基砖砌型亚波长光栅的紧凑型模式转换器. 物理学报, 2023, 72(16): 164203. doi: 10.7498/aps.72.20230673
    [3] 张书豪, 袁章亦安, 乔明, 张波. 超薄屏蔽层300 V SOI LDMOS抗电离辐射总剂量仿真研究. 物理学报, 2022, 71(10): 107301. doi: 10.7498/aps.71.20220041
    [4] 谭自豪, 孙小伟, 宋婷, 温晓东, 刘禧萱, 刘子江. 球形复合柱表面波声子晶体的带隙特性仿真. 物理学报, 2021, 70(14): 144301. doi: 10.7498/aps.70.20210165
    [5] 王硕, 常永伟, 陈静, 王本艳, 何伟伟, 葛浩. 新型绝缘体上硅静态随机存储器单元总剂量效应. 物理学报, 2019, 68(16): 168501. doi: 10.7498/aps.68.20190405
    [6] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究. 物理学报, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [7] 周航, 郑齐文, 崔江维, 余学峰, 郭旗, 任迪远, 余德昭, 苏丹丹. 总剂量效应致0.13m部分耗尽绝缘体上硅N型金属氧化物半导体场效应晶体管热载流子增强效应. 物理学报, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [8] 郝娟, 周广刚, 马跃, 黄文奇, 张鹏, 卢贵武. 高温条件下Ga3PO7晶体热学及声表面波性质的理论研究. 物理学报, 2016, 65(11): 113101. doi: 10.7498/aps.65.113101
    [9] 林建潇, 吴九汇, 刘爱群, 陈喆, 雷浩. 光梯度力驱动的纳米硅基光开关. 物理学报, 2015, 64(15): 154209. doi: 10.7498/aps.64.154209
    [10] 曾伟, 王海涛, 田贵云, 胡国星, 汪文. 研究激光激发的声表面波与材料近表面缺陷的振荡效应. 物理学报, 2015, 64(13): 134302. doi: 10.7498/aps.64.134302
    [11] 刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒. 电离辐射对部分耗尽绝缘体上硅器件低频噪声特性的影响. 物理学报, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [12] 石艳梅, 刘继芝, 姚素英, 丁燕红, 张卫华, 代红丽. 具有L型源极场板的双槽绝缘体上硅高压器件新结构. 物理学报, 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [13] 钱莉荣, 杨保和. ZnO薄膜/金刚石在不同激励条件下声表面波特性的计算与分析. 物理学报, 2013, 62(11): 117701. doi: 10.7498/aps.62.117701
    [14] 周振凯, 韦利明, 丰杰. ZnO/Diamond/Si结构中声表面波传播特性分析. 物理学报, 2013, 62(10): 104601. doi: 10.7498/aps.62.104601
    [15] 杨彪, 李智勇, 肖希, Nemkova Anastasia, 余金中, 俞育德. 硅基光栅耦合器的研究进展. 物理学报, 2013, 62(18): 184214. doi: 10.7498/aps.62.184214
    [16] 王玥, 刘丽炜, 胡思怡, 李其扬, 孙振皓, 苗馨卉, 杨小川, 张喜和. 基于COMSOL Multiphysics对Cu2S量子点的表面等离激元共振模拟研究. 物理学报, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [17] 王敬时, 徐晓东, 刘晓峻, 许钢灿. 利用激光超声技术研究表面微裂纹缺陷材料的低通滤波效应. 物理学报, 2008, 57(12): 7765-7769. doi: 10.7498/aps.57.7765
    [18] 杨 光, Santos Paulo V.. 磁控溅射制备ZnO薄膜及其声表面波特性. 物理学报, 2007, 56(6): 3515-3520. doi: 10.7498/aps.56.3515
    [19] 肖 夏, 尤学一, 姚素英. 表征超大规模集成电路互连纳米薄膜硬度特性的声表面波的频散特性. 物理学报, 2007, 56(4): 2428-2433. doi: 10.7498/aps.56.2428
    [20] 杨 光, P. V. Santos. 声表面波对GaAs(110)量子阱发光特性的调制. 物理学报, 2006, 55(8): 4327-4331. doi: 10.7498/aps.55.4327
计量
  • 文章访问数:  5717
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-06
  • 修回日期:  2015-08-24
  • 刊出日期:  2016-01-05

/

返回文章
返回