搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

降雨背景下诱骗态协议最优平均光子数的变色龙自适应策略

聂敏 王允 杨光 张美玲 裴昌幸

引用本文:
Citation:

降雨背景下诱骗态协议最优平均光子数的变色龙自适应策略

聂敏, 王允, 杨光, 张美玲, 裴昌幸

Optimal mean photon number of decoy state protocol based on chameleon self-adaptive strategy under the background of rainfall

Nie Min, Wang Yun, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing
PDF
导出引用
  • 为了应对降雨给采用诱骗态协议的量子通信系统带来的突发性干扰, 根据降雨分布模型和退极化信道的特性, 本文提出了基于变色龙算法的每脉冲最优平均光子数自适应策略; 建立了降雨强度、链路距离与最优平均光子数之间的自适应关系; 并对采用变色龙算法前后, 系统的性能参数进行了比较. 仿真结果表明, 当降雨强度J为30 mm/24 h、链路距离L为30 km时, 通过采用变色龙算法, 系统的安全密钥生成率由210-4提高到3.510-4; 当J为60 mm/24 h, L 为20 km时, 系统的信道生存函数值由0.52提高到0.63; 当要求生存函数不低于0.5时, 系统能够应对的最大雨强由62 mm/24 h提高到74 mm/24 h. 因此, 根据降雨强度和链路距离, 通过变色龙算法自适应地调整系统发送端信号脉冲所含的平均光子数, 可以提高量子通信系统在降雨背景下的有效性和可靠性.
    As one of the most common weathers in daily life, the rain can change the atmospheric compositions and humidity in a short time, which may cause non-ignorable attenuation in free-space quantum communication system. Besides, the absorption and scattering effects caused by raindrops can also bring huge attenuation to photon's propagation. In order to solve this burst interference caused by rain weather, optimal mean photon number per pulse and chameleon self-adaptive algorithm (CSA) are proposed based on the rainfall distribution model and decoy-state quantum key distribution. Due to the lack of producing mature ideal single photon source technology, the decoy-state protocol with highly attenuated laser becomes the most practical and most widely used quantum secure communication protocol currently. Among all the different kinds of decoy-state protocols, the vacuum+weak decoy state quantum communication secure protocol is chosen to be the basis of our research. Besides, in order to study the influence of mean photon number per signal pulse, we set the pulse ratio between signal state, decoy state and vacuum state to be fixed at 2:2:1. Since the performance of the vacuum+weak decoy state quantum communication system is closely related to the mean photon number per pulse, it is very necessary to confirm the optimal value. Combining the Weibull rainfall distribution model and Mie scattering theory, we first analyze the attenuation caused by rainfall in a free-space quantum communication system. Then the functional relationship among opt, rainfall intensity (J) and link distance (L) is built by studying the propagation of highly attenuated laser in depolarizing channel. Finally, two parameters, secure key rate and channel survival function, are chosen to evaluate the system's performance of reliability and validity. These two parameters are respectively compared between the system with and without CSA. Simulation results show that, as J=30 mm/24 h, L=30 km, the secure key generation rate rises from 210-4 up to 3.510-4 when using the CSA in the quantum communication system; as J=60 mm/24 h, L=20 km, the quantum channel survival function value increases from 0.52 to 0.63; as the quantum channel survival function value is required no lower than 0.5, the rainfall intensity in which quantum communication system can survive rises from 62 mm/24 h up to 74 mm/24 h. These results prove that there is a close relationship between opt and the channel parameters of the quantum communication system under the background of rainfall. Therefore, it is necessary for us to self-adapt the opt value by combining rainfall intensity with the CSA strategy if the reliability and survivability of free space quantum communication system are required to be improved.
      通信作者: 王允, 285025572@qq.com
    • 基金项目: 国家自然科学基金(批准号: 61172071, 61201194)、陕西省自然科学基础研究计划(批准号: 2014JQ8318)和陕西省国际科技合作与交流计划项目(批准号: 2015KW-013) 资助的课题.
      Corresponding author: Wang Yun, 285025572@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172071, 61201194), the Natural Science Research Foundation of Shaanxi Province, China (Grant No. 2014JQ8318), and the International Scientific and Technological Cooperation and Exchange Program in Shaanxi Province, China (Grant No. 2015KW-013).
    [1]

    Hwang W Y 2003 Phys. Rev. Lett. 91 508

    [2]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Peng C Z, Wang S K, Yang D, Pan J W, Hu Y F, Jiang S 2010 Nature Photonics 4 376

    [3]

    Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z, Pan J W 2012 Nature 488 185

    [4]

    Wang J Y, Yang B, Liao S K, Zhang L, Shen Q, Hu X F, Wu J C, Yang S J, Jiang H, Tang Y L, Zhong B, Liang H, Liu W Y, Hu Y H, Huang Y M, Qi B, Ren J G, Pan G S, Yin J, Jia J J, Chen Y A, Chen K, Peng C Z, Pan J W 2013 Nature Photonics 7 387

    [5]

    Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516

    [6]

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese) [聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 物理学报 63 240303]

    [7]

    Tyler GA, Boyd R W 2009 Opt. Lett. 34 142

    [8]

    Chen N, Quan D X, Pei C X, Yang H 2015 Chin. Phys. B 24 020304

    [9]

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301 (in Chinese) [聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 150301]

    [10]

    Hwang W Y 2003 Phys. Rev. Lett. 91 508

    [11]

    ElliottC, Pearson D, Troxel G 2003 Acm Sigcomm Computer Communication Review 33 227

    [12]

    Marshall J S, Langile R C, Palmer W M 1947 Journal of the Atmospheric Science 4 186

    [13]

    Weibull W, Mech A J 1951 Journal of Applied Microelectron 28 613

    [14]

    Mie G 1908 Ann. Phys. 25 377

    [15]

    Liu M, Liu X G, Mou Y J 2012 Infrared and Laser Engineering 41 2136 (in Chinese) [刘敏, 刘锡国, 牟京燕 2012 红外与激光工程 41 2136]

    [16]

    Bruss D, Faoro L, Macchiavello C 2000 Journal of Modern Optics 47 325

    [17]

    Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quant. Inf. Comput 5 325

    [18]

    Zhang L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 150301 [张琳, 聂敏, 刘晓慧 2013 物理学报 62 150301]

    [19]

    Liu T K, Wang J S, Liu X J, Zhan M S 2000 Acta Optica Sinica 20 1449 (in Chinese) [刘堂昆, 王继锁, 柳晓军, 詹明生 2000 光学学报 20 1449]

  • [1]

    Hwang W Y 2003 Phys. Rev. Lett. 91 508

    [2]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Peng C Z, Wang S K, Yang D, Pan J W, Hu Y F, Jiang S 2010 Nature Photonics 4 376

    [3]

    Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z, Pan J W 2012 Nature 488 185

    [4]

    Wang J Y, Yang B, Liao S K, Zhang L, Shen Q, Hu X F, Wu J C, Yang S J, Jiang H, Tang Y L, Zhong B, Liang H, Liu W Y, Hu Y H, Huang Y M, Qi B, Ren J G, Pan G S, Yin J, Jia J J, Chen Y A, Chen K, Peng C Z, Pan J W 2013 Nature Photonics 7 387

    [5]

    Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516

    [6]

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese) [聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 物理学报 63 240303]

    [7]

    Tyler GA, Boyd R W 2009 Opt. Lett. 34 142

    [8]

    Chen N, Quan D X, Pei C X, Yang H 2015 Chin. Phys. B 24 020304

    [9]

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301 (in Chinese) [聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 150301]

    [10]

    Hwang W Y 2003 Phys. Rev. Lett. 91 508

    [11]

    ElliottC, Pearson D, Troxel G 2003 Acm Sigcomm Computer Communication Review 33 227

    [12]

    Marshall J S, Langile R C, Palmer W M 1947 Journal of the Atmospheric Science 4 186

    [13]

    Weibull W, Mech A J 1951 Journal of Applied Microelectron 28 613

    [14]

    Mie G 1908 Ann. Phys. 25 377

    [15]

    Liu M, Liu X G, Mou Y J 2012 Infrared and Laser Engineering 41 2136 (in Chinese) [刘敏, 刘锡国, 牟京燕 2012 红外与激光工程 41 2136]

    [16]

    Bruss D, Faoro L, Macchiavello C 2000 Journal of Modern Optics 47 325

    [17]

    Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quant. Inf. Comput 5 325

    [18]

    Zhang L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 150301 [张琳, 聂敏, 刘晓慧 2013 物理学报 62 150301]

    [19]

    Liu T K, Wang J S, Liu X J, Zhan M S 2000 Acta Optica Sinica 20 1449 (in Chinese) [刘堂昆, 王继锁, 柳晓军, 詹明生 2000 光学学报 20 1449]

  • [1] 詹绍康, 王金东, 董双, 黄偲颖, 侯倾城, 莫乃达, 弥赏, 向黎冰, 赵天明, 於亚飞, 魏正军, 张智明. 基于四态协议的半量子密钥分发诱骗态模型的有限码长分析. 物理学报, 2023, 72(22): 220303. doi: 10.7498/aps.72.20230849
    [2] 柳云峰, 李整林, 秦继兴, 吴双林, 王梦圆, 周江涛. 东印度洋海域风和降雨对环境噪声的影响. 物理学报, 2022, 71(20): 204303. doi: 10.7498/aps.71.20220615
    [3] 陈松懋, 苏秀琴, 郝伟, 张振扬, 汪书潮, 朱文华, 王杰. 基于光子计数激光雷达的自适应门控抑噪及三维重建算法. 物理学报, 2022, 71(10): 104202. doi: 10.7498/aps.71.20211697
    [4] 马啸, 孙铭烁, 刘靖阳, 丁华建, 王琴. 一种基于标记单光子源的态制备误差容忍量子密钥分发协议. 物理学报, 2022, 71(3): 030301. doi: 10.7498/aps.71.20211456
    [5] 刘金璐, 杨杰, 张涛, 樊矾, 黄伟, 徐兵杰. 一种基于平衡零差探测技术的平均光子数测量方法. 物理学报, 2021, 70(24): 240303. doi: 10.7498/aps.70.20211216
    [6] 咸明皓, 刘西川, 印敏, 宋堃, 高太长. 基于星地链路的垂直降雨场反演方法. 物理学报, 2020, 69(2): 024301. doi: 10.7498/aps.69.20191232
    [7] 周媛媛, 张合庆, 周学军, 田培根. 基于标记配对相干态光源的诱骗态量子密钥分配性能分析. 物理学报, 2013, 62(20): 200302. doi: 10.7498/aps.62.200302
    [8] 姜世泰, 高太长, 刘西川, 刘磊, 刘志田. 基于微波链路的降雨场反演方法研究. 物理学报, 2013, 62(15): 154303. doi: 10.7498/aps.62.154303
    [9] 周旋, 杨晓峰, 李紫薇, 于暘, 马胜. 降雨对C波段散射计测风的影响及其校正. 物理学报, 2012, 61(14): 149202. doi: 10.7498/aps.61.149202
    [10] 文洪燕, 杨杨, 韦联福. 光学微腔中少光子数叠加态的耗散动力学. 物理学报, 2012, 61(18): 184206. doi: 10.7498/aps.61.184206
    [11] 周媛媛, 周学军. 基于弱相干态光源的非正交编码被动诱骗态量子密钥分配. 物理学报, 2011, 60(10): 100301. doi: 10.7498/aps.60.100301
    [12] 赵延来, 黄思训, 杜华栋, 仲跻芹. 正则化方法同化多普勒天气雷达资料及对降雨预报的影响. 物理学报, 2011, 60(7): 079202. doi: 10.7498/aps.60.079202
    [13] 张亮, 黄思训, 钟剑, 杜华栋. 基于降雨率的GMF+RAIN模型构建及在台风风场反演中的应用. 物理学报, 2010, 59(10): 7478-7490. doi: 10.7498/aps.59.7478
    [14] 刘西川, 高太长, 秦健, 刘磊. 降雨对微波传输特性的影响分析. 物理学报, 2010, 59(3): 2156-2162. doi: 10.7498/aps.59.2156
    [15] 权东晓, 裴昌幸, 朱畅华, 刘 丹. 一种新的预报单光子源诱骗态量子密钥分发方案. 物理学报, 2008, 57(9): 5600-5604. doi: 10.7498/aps.57.5600
    [16] 孙贤明, 韩一平, 史小卫. 降雨融化层后向散射的蒙特卡罗仿真. 物理学报, 2007, 56(4): 2098-2105. doi: 10.7498/aps.56.2098
    [17] 李福利, 柴晋临, 张智明. 构造光子数湮没算子高次幂的正交本征态的新方法. 物理学报, 1993, 42(7): 1058-1064. doi: 10.7498/aps.42.1058
    [18] 李福利;柴晋临;张智明. 构造光子数湮没算子高次幂的正交本征态的新方法. 物理学报, 1991, 40(7): 1058-1064. doi: 10.7498/aps.40.1058
    [19] 郭光灿, 柴金华. 光泵三能级原子体系产生光子数压缩态. 物理学报, 1991, 40(6): 912-922. doi: 10.7498/aps.40.912
    [20] 刘正东. 光学腔内光子数态的形成与条件. 物理学报, 1991, 40(2): 210-218. doi: 10.7498/aps.40.210
计量
  • 文章访问数:  4797
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-16
  • 修回日期:  2015-10-29
  • 刊出日期:  2016-01-20

/

返回文章
返回