搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ku波段编码式电控超薄周期单元设计与验证

杨欢欢 杨帆 许慎恒 李懋坤 曹祥玉 高军

引用本文:
Citation:

Ku波段编码式电控超薄周期单元设计与验证

杨欢欢, 杨帆, 许慎恒, 李懋坤, 曹祥玉, 高军

Design and verification of an electronically controllable ultrathin coding periodic element in Ku band

Yang Huan-Huan, Yang Fan, Xu Shen-Heng, Li Mao-Kun, Cao Xiang-Yu, Gao Jun
PDF
导出引用
  • 编码式电控周期单元通过加载电子控制器件使周期结构具有编码式的电可调特点. 本文利用PIN二极管, 设计实现了一种工作在Ku波段的超薄平面电控单元结构. 当外加电压控制二极管导通或截止时, 该结构的反射相位呈现出180°的相位差, 并且具有较低的反射损耗. 因此, 当对周期排列的单元外加不同的电压时, 可等效为用不同组合的“1”, “0”对结构进行编码, 从而可以获得不同的电磁功能. 为验证单元的编码特性, 从“场”与“路”两个角度考虑, 设计了实际的偏置电路, 制作了单元样品, 并基于波导法测试了其性能. 实验结果表明: 在加载不同的控制电压时, 制作的单元结构实现了设计的低损耗和相位差; 实验与仿真符合良好. 提出的周期单元形式简单, 厚度超薄, 其电控编码式特性在主动式隐身表面或波束捷变天线设计等许多方面都有潜在应用.
    The coding periodic element is able to achieve coded reconfigurable electromagnetic (EM) responses by loading controllable electronic devices. In this work, an electronically controllable ultrathin planar periodic element structure in Ku band is implemented with one PIN diode. When the PIN diode turns ON or OFF by applying a proper biasing voltage, the resonant property of the element changes correspondingly, and hence a 180° phase difference between the two states is obtained. By optimizing the geometrical parameters, the reflection loss less than 0.5 dB is achieved by the proposed element. Therefore, using a proper biasing voltage control network, the PIN diodes of the proposed elements in a periodic arrangement are set at different states, which may be denoted by a binary string with "1"s or "0"s, and the whole array of elements operates as a binary coding periodic structure and exhibits controllable EM functionalities. In order to verify the coding property of the proposed element, the general principle for the biasing circuit design is given. An optimized biasing circuit is thoroughly studied using both field distribution analysis and equivalent circuit theory. Simulated results show that the specially designed biasing hardly affects the element reflection performance. Finally, a group of element prototypes are fabricated with welded PIN diodes and measured using the standard waveguide test method. The difference in mirror image between the waveguide test and the desired periodic arrangement is also discussed. The experimental results validate that the proposed element successfully achieves good coding EM performance by controlling its biasing voltage. The reflection loss of the element is very low, and well distributed phase difference between the two element states is observed. The simulation and experiment results agree well, and the deviation between them is analyzed in detail. The proposed element possesses distinctive favorable features such as coded controllable EM functionalities, simple structure and ultrathin profile, thus exhibiting the promising prospects in tunable stealth surface, agile antennas, and many other applications.
      通信作者: 杨欢欢, jianye8901@126.com
    • 基金项目: 清华信息科学与技术国家实验室和国家自然科学基金(批准号: 61271100, 61371013, 61471389) 资助的课题.
      Corresponding author: Yang Huan-Huan, jianye8901@126.com
    • Funds: Project supported by theTsinghua National Laboratory for Information Science and Technology(TNList), China and the National Natural Science Foundation of China (Grant Nos. 61271100, 61371013, 61471389).
    [1]

    Cui T J, Liu R P, Smith D R 2010 Metamaterials: Theory, Design, and Applications (New York: Springer US) p2

    [2]

    Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366

    [3]

    Xiong H, Hong J S, Jin D L, Zhang Z M 2012 Chin. Phys. B 21 094101

    [4]

    Xu H X, Wang G M, Wang J F, Yang Z M 2012 Chin. Phys. B 21 124101

    [5]

    Goussetis G, Feresidis A P, Vardaxoglou J C 2006 IEEE T. Anntenn. Propag. 54 82

    [6]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P D 2007 IEEE T. Antenn. Propag. 55 3630

    [7]

    Dang K Z, Shi J M, Li Z G, Meng X H, Wang Q C 2015 Acta Phys. Sin. 64 114101 (in Chinese) [党可征, 时家明, 李志刚, 孟祥豪, 王启超 2015 物理学报 64 114101]

    [8]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [9]

    Li L, Yang Y, Liang C H 2011 J. Appl. Phys. 110 063702

    [10]

    Li L Y, Wang J, Du H L, Wang J F, Qu S B 2015 Chin. Phys. B 21 094101

    [11]

    Sievenpiper D, Zhang L J, Broas R F, Alexopolous N G, Yablonovitch E 1999 IEEE T. Microw. Theory. 47 2059

    [12]

    Shi Y Y, Tang W C, Liu S, Wang C, Zhuang W 2015 IEEE T. Electromagn. C 57 532

    [13]

    Su Z J, Dang X J, Li L, Liang C H 2015 Electron. Lett. 51 501

    [14]

    Sivasamy R, Kanagasabai M 2015 IEEE Microw. Wirel. Co. 25 298

    [15]

    Yu Y M, Chiu C N, Chiou Y P, Wu T L 2015 IEEE T. Antenn. Propag. 63 1641

    [16]

    Zhang J, Gao J S, Xu N X, Yu M 2015 Acta Phys. Sin. 64 067302 (in Chinese) [张建, 高劲松, 徐念喜, 于淼 2015 物理学报 64 067302]

    [17]

    Zhu X C, Hong W, Wu K, Tang H J, Hao Z C, Chen J X, Yang Q G 2013 IEEE Antenn. Wirel. Pr. 12 968

    [18]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE T. Antenn. Propag. 63 3522

    [19]

    Fan Y, Qu S B, Wang J F, Zhang J Q, Feng M D, Zhang A X 2015 Acta Phys. Sin. 64 184101 (in Chinese) [范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学 2015 物理学报 64 184101]

    [20]

    Giovampaola C D, Engheta N 2014 Nat. Mater. 13 1115

    [21]

    Cui T J, Qi M Q, Wang X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 218

    [22]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE T. Antenn. Propag. 61 2327

    [23]

    Hannan P, Balfour M 1965 IEEE T. Antenn. Propag. 13 342

  • [1]

    Cui T J, Liu R P, Smith D R 2010 Metamaterials: Theory, Design, and Applications (New York: Springer US) p2

    [2]

    Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366

    [3]

    Xiong H, Hong J S, Jin D L, Zhang Z M 2012 Chin. Phys. B 21 094101

    [4]

    Xu H X, Wang G M, Wang J F, Yang Z M 2012 Chin. Phys. B 21 124101

    [5]

    Goussetis G, Feresidis A P, Vardaxoglou J C 2006 IEEE T. Anntenn. Propag. 54 82

    [6]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P D 2007 IEEE T. Antenn. Propag. 55 3630

    [7]

    Dang K Z, Shi J M, Li Z G, Meng X H, Wang Q C 2015 Acta Phys. Sin. 64 114101 (in Chinese) [党可征, 时家明, 李志刚, 孟祥豪, 王启超 2015 物理学报 64 114101]

    [8]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [9]

    Li L, Yang Y, Liang C H 2011 J. Appl. Phys. 110 063702

    [10]

    Li L Y, Wang J, Du H L, Wang J F, Qu S B 2015 Chin. Phys. B 21 094101

    [11]

    Sievenpiper D, Zhang L J, Broas R F, Alexopolous N G, Yablonovitch E 1999 IEEE T. Microw. Theory. 47 2059

    [12]

    Shi Y Y, Tang W C, Liu S, Wang C, Zhuang W 2015 IEEE T. Electromagn. C 57 532

    [13]

    Su Z J, Dang X J, Li L, Liang C H 2015 Electron. Lett. 51 501

    [14]

    Sivasamy R, Kanagasabai M 2015 IEEE Microw. Wirel. Co. 25 298

    [15]

    Yu Y M, Chiu C N, Chiou Y P, Wu T L 2015 IEEE T. Antenn. Propag. 63 1641

    [16]

    Zhang J, Gao J S, Xu N X, Yu M 2015 Acta Phys. Sin. 64 067302 (in Chinese) [张建, 高劲松, 徐念喜, 于淼 2015 物理学报 64 067302]

    [17]

    Zhu X C, Hong W, Wu K, Tang H J, Hao Z C, Chen J X, Yang Q G 2013 IEEE Antenn. Wirel. Pr. 12 968

    [18]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE T. Antenn. Propag. 63 3522

    [19]

    Fan Y, Qu S B, Wang J F, Zhang J Q, Feng M D, Zhang A X 2015 Acta Phys. Sin. 64 184101 (in Chinese) [范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学 2015 物理学报 64 184101]

    [20]

    Giovampaola C D, Engheta N 2014 Nat. Mater. 13 1115

    [21]

    Cui T J, Qi M Q, Wang X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 218

    [22]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE T. Antenn. Propag. 61 2327

    [23]

    Hannan P, Balfour M 1965 IEEE T. Antenn. Propag. 13 342

  • [1] 刘永棠, 盛亮, 李阳, 张金海, 孟伦, 李豪卿, 袁媛, 孙铁平, 欧阳晓平. 周期调制结构平面薄膜电爆炸实验研究. 物理学报, 2021, 70(6): 065203. doi: 10.7498/aps.70.20201574
    [2] 赵健, 陈昭昀, 庄希宁, 薛程, 吴玉椿, 郭国平. 量子态制备及其在量子机器学习中的前景. 物理学报, 2021, 70(14): 140307. doi: 10.7498/aps.70.20210958
    [3] 李绍和, 李九生, 孙建忠. 太赫兹频率编码器. 物理学报, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [4] 乔厚, 何锃, 张恒堃, 彭伟才, 江雯. 二维含多孔介质周期复合结构声传播分析. 物理学报, 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [5] 许雪艳, 侯顺永, 印建平. 一种可控的Ioffe型冷分子表面微电阱. 物理学报, 2018, 67(11): 113701. doi: 10.7498/aps.67.20180206
    [6] 王心怡, 范全平, 魏来, 杨祖华, 张强强, 陈勇, 彭倩, 晏卓阳, 肖沙里, 曹磊峰. Fresnel波带片编码成像的高分辨重建. 物理学报, 2017, 66(5): 054203. doi: 10.7498/aps.66.054203
    [7] 姜久龙, 姚宏, 杜军, 赵静波, 邓涛. 双开口Helmholtz局域共振周期结构低频带隙特性研究. 物理学报, 2017, 66(6): 064301. doi: 10.7498/aps.66.064301
    [8] 解万财, 黄素娟, 邵蔚, 朱福全, 陈木生. 基于混合光模式阵列的自由空间编码通信. 物理学报, 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [9] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏. 物理学报, 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [10] 尹剑飞, 温激鸿, 肖勇, 温熙森. 基于高级统计能量分析的周期加筋板振动特性研究. 物理学报, 2015, 64(13): 134301. doi: 10.7498/aps.64.134301
    [11] 刘华松, 刘丹丹, 姜承慧, 王利栓, 姜玉刚, 孙鹏, 季一勤. 周期结构薄膜在折射率色散下反射区特性研究. 物理学报, 2014, 63(1): 017801. doi: 10.7498/aps.63.017801
    [12] 高明, 吴志强. 一维三振子周期结构带隙设计. 物理学报, 2013, 62(14): 140507. doi: 10.7498/aps.62.140507
    [13] 廖东, 王小敏, 张家树, 张文芳. 基于空间伸缩结构的参数可控的混沌Hash函数. 物理学报, 2012, 61(23): 230506. doi: 10.7498/aps.61.230506
    [14] 鲁思龙, 吴先良, 任信钢, 梅诣偲, 沈晶, 黄志祥. 色散周期结构的辅助场时域有限差分法分析. 物理学报, 2012, 61(19): 194701. doi: 10.7498/aps.61.194701
    [15] 张荣福, 王涛, 潘超, 王亮亮, 庄松林. 波前编码系统景深延拓性能研究. 物理学报, 2011, 60(11): 114204. doi: 10.7498/aps.60.114204
    [16] 甘甜, 冯少彤, 聂守平, 朱竹青. 基于分块DCT变换编码的小波域多幅图像融合算法. 物理学报, 2011, 60(11): 114205. doi: 10.7498/aps.60.114205
    [17] 王伟, 曹祥玉, 王帅, 王瑞, 郑秋容. 支撑介质对平面型电磁带隙结构带隙特性的影响. 物理学报, 2009, 58(7): 4708-4716. doi: 10.7498/aps.58.4708
    [18] 郑秋容, 付云起, 林宝勤, 袁乃昌. 介质覆盖对高阻表面带隙的影响. 物理学报, 2006, 55(9): 4698-4703. doi: 10.7498/aps.55.4698
    [19] 邵惠国, 赵 霁, 吴佳文, 周建英. 有限宽度布拉格原子层中光子囚禁与移动孤子的研究. 物理学报, 2005, 54(3): 1420-1425. doi: 10.7498/aps.54.1420
    [20] 肖万能, 赵 霁, 王维江, 李润华, 周建英. 周期多层量子阱结构的光吸收特性与电场分布. 物理学报, 2003, 52(9): 2293-2297. doi: 10.7498/aps.52.2293
计量
  • 文章访问数:  5773
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-13
  • 修回日期:  2015-11-15
  • 刊出日期:  2016-03-05

/

返回文章
返回