搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于红外激光防护的高开关率VO2薄膜

王雅琴 姚刚 黄子健 黄鹰

引用本文:
Citation:

用于红外激光防护的高开关率VO2薄膜

王雅琴, 姚刚, 黄子健, 黄鹰

Infrared laser protection of multi-wavelength with high optical switching efficiency VO2 film

Wang Ya-Qin, Yao Gang, Huang Zi-Jian, Huang Ying
PDF
导出引用
  • 采用反应离子束溅射和后退火处理技术在石英玻璃基底上制备了具有纳米粒子的二氧化钒(VO2)薄膜. 该薄膜具有半导体-金属相变特性,在3 m处的开关率达到76.6%。 热致相变实验结果给出了准确的最佳退火温度为465 ℃. 仿真、热致相变和光致相变实验都显示VO2薄膜在红外波段具有很高的光学开关特性. 光电池防护实验结果显示VO2薄膜将硅光电池的抗干扰能力提升了2.6倍, 证明了VO2在激光防护中的适用性. 采用连续可调节系统研究得到VO2在室温条件下的相变阈值功率密度为4.35 W/cm2, 损伤阈值功率密度为404 W/cm2。 低相变阈值和高损伤阈值都进一步证明VO2薄膜适用于激光防护系统。本实验制备的VO2薄膜在光开关、光电存储器、智能窗等方面也具有广泛的应用价值.
    Vanadium dioxide (VO2) film with nanoparticles is fabricated by reactive ion beam deposition (RIBD) technology and post-annealing method on a quartz glass substrate. RIBD can enhance the damage threshold of VO2 film and reduce its scattering at insulator-state. And post-annealing can eliminate the structure defects and residual stress. VO2 film exhibits first-order and reversible metal-to-insulator (MIT) phase transition at a temperature of 68 ℃. It also exhibits photo-induced MIT, in which process a metal-like phase of monoclinic VO2 appears. With many surprising features in heat-induced and photo-induced MIT processes, VO2 film turn to satisfy all the characteristics needed for a laser protection system. The thickness of VO2 film used in these experiments and simulations is about 100 nm. The double-frequency He-Ne laser at a wavelength of 3 m is used to perform the experiment of heat-induced MIT, with a temperature controlling system. The exact optimal annealing temperature is demonstrated to be 465 ℃, as the sample annealing at this temperature shows the sharpest transition properties and unmixed VO2 phase peaks in X-ray diffraction pattern. Drude and Drude-Lorentz dispersion models are taken to analyze the dielectric constant of VO2. Then, the complex refractive index is calculated for simulation. Simulations with the TFCale software show that the transmissions at high temperature and low temperature have high contrasts in the infrared range. MIT experiments at multi-wavelength, which cover heat-induced and photo-induced MIT phase transition, are performed to investigate the applicability of VO2 film in multi-wavelength laser protection for both continuous wave and pulsed lasers Thus the excellent performance of VO2 film for laser protection is roundly verified. The laser protection experiments on silicon photocell exhibit that the VO2 film enhances the anti-jamming capability of photocell system by about 2.6 times, demonstrating the applicability of VO2 film to laser protection system. The power density of MIT transition threshold of VO2 film with a thickness of 100 nm is 4.35 W/cm2 at room temperature, which is investigated with a continuous wave laser at a wavelength of 1.08 m with a continuous tunable system. In addition, atomic force microscope is used to observe the film surfaces, which are irradiated by lasers with different power densities for different times The experimental results demonstrate that the power density damage threshold of VO2 film becomes very high (404 W/cm2). The low MIT transition threshold and high damage threshold of VO2 film further demonstrate its applicability as a key role for a laser protection system. With the high switching efficiency ratio and high damage threshold, VO2 thin film can be used in optical switch, smart windows and photoelectric device.
      通信作者: 黄鹰, hying@hust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61474051)资助的课题.
      Corresponding author: Huang Ying, hying@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61474051).
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Xiong Y, Wen Q Y, Tian W, Mao Q, Chen Z, Yang Q H, Jin Y L 2015 Acta Phys. Sin. 64 017102 (in Chinese) [熊瑛, 文歧业, 田伟, 毛淇, 陈智, 杨青慧, 荆玉兰 2015 物理学报 64 017102]

    [3]

    Mai L Q, Hu B, Hu T, Chen W, Gu E D 2006 J. Phys. Chem. B 110 19083

    [4]

    Liang J R, Wu M J, Hu M, Liu J, Zhu N W, Xia X X, Chen H D 2014 Chin. Phys. B 23 076801

    [5]

    Strelcov E, Lilach Y, Kolmakov A 2009 Nano Lett. 9 2322

    [6]

    Chen C, Yi X, Zhao X, Xiong B 2001 Sens. Act. A: Phys. 90 212

    [7]

    de Almeida L A L, Deep G S, Lima A M N, Neff H 2002 Opt. Eng. 41 2582

    [8]

    Verleur H, Barker A, Berglund C 1968 Phys. Rev. 172 788

    [9]

    Xu G, Jin P, Tazawa M, Yoshimura K 2004 Sol. Energy Mater. and Sol. Cells 83 29

    [10]

    Wang H C, Yi X J, Li Y 2005 Opt. Commun. 256 305

    [11]

    Zhao Y, Xu R, Zhang X R, Hu X, Knize R J, Lu Y L 2013 Energy Build. 66 545

    [12]

    Huang Z, Chen S, L C, Huang Y, Lai J 2012 Appl. Phys. Lett. 101 191905

    [13]

    Ben-Messaoud T, Landry G, Gariepy J P, Ramamoorthy B, Ashrit P V, Hache A 2008 Opt. Commun. 281 6024

    [14]

    Becker M F, Buckman A B, Walser R M, Lépine T, Georges P, Brun A 1994 Appl. Phys. Lett. 65 1507

    [15]

    Rini M, Cavalleri A, Schoenlein R W, Lopez R, Feldman L C, Haglund R F, Boatner L A, Haynes T E 2005 Opt. Lett. 30 558

    [16]

    Xue X, Jiang M, Li G F, Lin X, Ma G H, Jin P 2013 J. Appl. Phys. 114 193506

    [17]

    Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhacs A, Chaker M, Siwick B J 2014 Science 346 445

    [18]

    Bai T, Li C Q, Sun J, Song Y, Wang J, Blau W J, Zhang B, Chen Y 2015 Chem.-Eur. J. 21 4622

    [19]

    Du Y Q 2010 Photonics and Optoelectronic (SOPO) Wuhan China, May 16-18, 2010 p1

    [20]

    Danilov O B, Zhevlakov A P, Sidorov A I, Tul'skii S A, Yachnev I L, Titterton D 2000 J. Opt. Technol. 67 526

    [21]

    Cavalleri A, Dekorsy T, Chong H H W, Kieffer J C, Schoenlein R W 2004 Phys. Rev. B 70 161102

    [22]

    Luo Z F, Wu Z M, Xu X D, Wang T, Jiang Y D 2010 Chin. Phys. B 19 106103

    [23]

    Giannetti C 2004 Ph. D. Dissertation (Brescia: Universita Cattolica del Sacro Cuore)

    [24]

    Coath J A, Richardson M A 1999 Conference on Advances in Optical Interference Coatings, Berlin, Germany, May 25-27, 1999 p555

    [25]

    Kang L, Gao Y, Zhang Z, Du J, Cao C, Chen Z, Luo H 2010 J. Phys. Chem. C 114 1901

    [26]

    Zhou Y, Cai Y F, Hu X, Long Y 2015 J. Mater. Chem. A 3 1121

    [27]

    Zhao L L, Miao L, Liu C Y, Li C, Asaka T, Kang Y P, Iwamoto Y, Tanemura S, Gu H, Su H R 2014 Sci. Rept. 4 11

    [28]

    Chen Z, Gao Y, Kang L, Du J, Zhang Z, Luo H, Miao H, Tan G 2011 Sol. Energy Mater. and Sol.Cells 95 2677

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Xiong Y, Wen Q Y, Tian W, Mao Q, Chen Z, Yang Q H, Jin Y L 2015 Acta Phys. Sin. 64 017102 (in Chinese) [熊瑛, 文歧业, 田伟, 毛淇, 陈智, 杨青慧, 荆玉兰 2015 物理学报 64 017102]

    [3]

    Mai L Q, Hu B, Hu T, Chen W, Gu E D 2006 J. Phys. Chem. B 110 19083

    [4]

    Liang J R, Wu M J, Hu M, Liu J, Zhu N W, Xia X X, Chen H D 2014 Chin. Phys. B 23 076801

    [5]

    Strelcov E, Lilach Y, Kolmakov A 2009 Nano Lett. 9 2322

    [6]

    Chen C, Yi X, Zhao X, Xiong B 2001 Sens. Act. A: Phys. 90 212

    [7]

    de Almeida L A L, Deep G S, Lima A M N, Neff H 2002 Opt. Eng. 41 2582

    [8]

    Verleur H, Barker A, Berglund C 1968 Phys. Rev. 172 788

    [9]

    Xu G, Jin P, Tazawa M, Yoshimura K 2004 Sol. Energy Mater. and Sol. Cells 83 29

    [10]

    Wang H C, Yi X J, Li Y 2005 Opt. Commun. 256 305

    [11]

    Zhao Y, Xu R, Zhang X R, Hu X, Knize R J, Lu Y L 2013 Energy Build. 66 545

    [12]

    Huang Z, Chen S, L C, Huang Y, Lai J 2012 Appl. Phys. Lett. 101 191905

    [13]

    Ben-Messaoud T, Landry G, Gariepy J P, Ramamoorthy B, Ashrit P V, Hache A 2008 Opt. Commun. 281 6024

    [14]

    Becker M F, Buckman A B, Walser R M, Lépine T, Georges P, Brun A 1994 Appl. Phys. Lett. 65 1507

    [15]

    Rini M, Cavalleri A, Schoenlein R W, Lopez R, Feldman L C, Haglund R F, Boatner L A, Haynes T E 2005 Opt. Lett. 30 558

    [16]

    Xue X, Jiang M, Li G F, Lin X, Ma G H, Jin P 2013 J. Appl. Phys. 114 193506

    [17]

    Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhacs A, Chaker M, Siwick B J 2014 Science 346 445

    [18]

    Bai T, Li C Q, Sun J, Song Y, Wang J, Blau W J, Zhang B, Chen Y 2015 Chem.-Eur. J. 21 4622

    [19]

    Du Y Q 2010 Photonics and Optoelectronic (SOPO) Wuhan China, May 16-18, 2010 p1

    [20]

    Danilov O B, Zhevlakov A P, Sidorov A I, Tul'skii S A, Yachnev I L, Titterton D 2000 J. Opt. Technol. 67 526

    [21]

    Cavalleri A, Dekorsy T, Chong H H W, Kieffer J C, Schoenlein R W 2004 Phys. Rev. B 70 161102

    [22]

    Luo Z F, Wu Z M, Xu X D, Wang T, Jiang Y D 2010 Chin. Phys. B 19 106103

    [23]

    Giannetti C 2004 Ph. D. Dissertation (Brescia: Universita Cattolica del Sacro Cuore)

    [24]

    Coath J A, Richardson M A 1999 Conference on Advances in Optical Interference Coatings, Berlin, Germany, May 25-27, 1999 p555

    [25]

    Kang L, Gao Y, Zhang Z, Du J, Cao C, Chen Z, Luo H 2010 J. Phys. Chem. C 114 1901

    [26]

    Zhou Y, Cai Y F, Hu X, Long Y 2015 J. Mater. Chem. A 3 1121

    [27]

    Zhao L L, Miao L, Liu C Y, Li C, Asaka T, Kang Y P, Iwamoto Y, Tanemura S, Gu H, Su H R 2014 Sci. Rept. 4 11

    [28]

    Chen Z, Gao Y, Kang L, Du J, Zhang Z, Luo H, Miao H, Tan G 2011 Sol. Energy Mater. and Sol.Cells 95 2677

  • [1] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF 2高压相变行为的第一性原理研究. 物理学报, 2022, 71(1): 017102. doi: 10.7498/aps.71.20211163
    [2] 宋睿睿, 邓钦玲, 周绍林. 基于相变与悬链线连续相位调控的超构光子开关. 物理学报, 2022, 71(2): 029101. doi: 10.7498/aps.71.20211538
    [3] 王伟, 揭泉林. 基于机器学习J1-J2反铁磁海森伯自旋链相变点的识别方法. 物理学报, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [4] 赵中华, 渠广昊, 姚佳池, 闵道敏, 翟鹏飞, 刘杰, 李盛涛. 热峰作用下单斜ZrO2相变过程的分子动力学模拟. 物理学报, 2021, 70(13): 136101. doi: 10.7498/aps.70.20201861
    [5] 刘妮, 张小芳, 梁九卿. 双光腔光机械系统的动力学相变和选择性能量交换. 物理学报, 2021, 70(14): 140301. doi: 10.7498/aps.70.20210178
    [6] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF2高压相变行为的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211163
    [7] 杨培棣, 欧阳琛, 洪天舒, 张伟豪, 苗俊刚, 吴晓君. 利用连续激光抽运-太赫兹探测技术研究单晶和多晶二氧化钒纳米薄膜的相变. 物理学报, 2020, 69(20): 204205. doi: 10.7498/aps.69.20201188
    [8] 刘妮, 黄珊, 李军奇, 梁九卿. 有限温度下腔光机械系统中N个二能级原子的相变和热力学性质. 物理学报, 2019, 68(19): 193701. doi: 10.7498/aps.68.20190347
    [9] 徐婷婷, 李毅, 陈培祖, 蒋蔚, 伍征义, 刘志敏, 张娇, 方宝英, 王晓华, 肖寒. 基于AZO/VO2/AZO结构的电压诱导相变红外光调制器. 物理学报, 2016, 65(24): 248102. doi: 10.7498/aps.65.248102
    [10] 曲艳东, 孔祥清, 李晓杰, 闫鸿浩. 热处理对爆轰合成的纳米TiO2混晶的结构相变的影响. 物理学报, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [11] 朱慧群, 李毅, 叶伟杰, 李春波. 花状掺杂W-VO2/ZnO热致变色纳米复合薄膜研究. 物理学报, 2014, 63(23): 238101. doi: 10.7498/aps.63.238101
    [12] 袁文瑞, 李毅, 王晓华, 郑鸿柱, 陈少娟, 陈建坤, 孙瑶, 唐佳茵, 刘飞, 郝如龙, 方宝英, 肖寒. VO2/AZO复合薄膜的制备及其光电特性研究. 物理学报, 2014, 63(21): 218101. doi: 10.7498/aps.63.218101
    [13] 刘志强, 常胜江, 王晓雷, 范飞, 李伟. 基于VO2薄膜相变原理的温控太赫兹超材料调制器. 物理学报, 2013, 62(13): 130702. doi: 10.7498/aps.62.130702
    [14] 佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞. 磁控溅射制备W掺杂VO2/FTO复合薄膜及其性能分析. 物理学报, 2013, 62(20): 208102. doi: 10.7498/aps.62.208102
    [15] 苏锐, 何捷, 陈家胜, 郭英杰. 金红石相VO2电子结构与光电性质的第一性原理研究. 物理学报, 2011, 60(10): 107101. doi: 10.7498/aps.60.107101
    [16] 朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英. 纳米VO2/ZnO复合薄膜的热致变色特性研究. 物理学报, 2011, 60(9): 098104. doi: 10.7498/aps.60.098104
    [17] 宋婷婷, 何捷, 林理彬, 陈军. 氧化钒晶体的半导体至金属相变的理论研究. 物理学报, 2010, 59(9): 6480-6486. doi: 10.7498/aps.59.6480
    [18] 陈贺胜. 带有2+1味道Wilson费米子的格点量子色动力学在有限温度、有限密度下的相变. 物理学报, 2009, 58(10): 6791-6797. doi: 10.7498/aps.58.6791
    [19] 杨 帅, 李养贤, 马巧云, 徐学文, 牛萍娟, 李永章, 牛胜利, 李洪涛. FTIR研究快中子辐照直拉硅中的VO2. 物理学报, 2005, 54(5): 2256-2260. doi: 10.7498/aps.54.2256
    [20] 张可言. 金属材料在中强度激光辐照下的相变速度研究. 物理学报, 2004, 53(6): 1815-1819. doi: 10.7498/aps.53.1815
计量
  • 文章访问数:  5477
  • PDF下载量:  401
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-12
  • 修回日期:  2015-12-15
  • 刊出日期:  2016-03-05

/

返回文章
返回