搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拉曼增益和自陡峭效应对艾里脉冲传输特性的影响

朱坤占 贾维国 张魁 于宇 张俊萍

引用本文:
Citation:

拉曼增益和自陡峭效应对艾里脉冲传输特性的影响

朱坤占, 贾维国, 张魁, 于宇, 张俊萍

Influences of Raman gain and self-steepening on the propagation characteristic of Airy pulse

Zhu Kun-Zhan, Jia Wei-Guo, Zhang Kui, Yu Yu, Zhang Jun-Ping
PDF
导出引用
  • 利用包含拉曼增益和自陡峭效应的非线性薛定谔方程, 忽略光纤损耗的情况下, 模拟和分析了艾里脉冲在单模光纤中的传输特性. 发现艾里脉冲在光纤中传输时由于受到拉曼增益和自陡峭效应的影响, 在一定条件下会转变为孤子, 并且, 转变后形成的孤子传播方向发生了偏移. 在时域方面, 艾里脉冲的小峰个数迅速减少, 变成含有一个主峰和次峰能量可以忽略的峰值结构, 此时, 可以把这个峰值结构近似为孤子的结构. 同时发现, 不管截止系数a和艾里函数振幅b 取什么值, 拉曼增益和自陡峭效应都会减小艾里脉冲的时移. 研究了艾里脉冲的加速度特性, 发现一定的传输距离下, 艾里脉冲的横向加速度在初始时并不是一个稳定的值, 但随着传输距离的增大, 加速度慢慢趋于稳定.
    By using nonlinear Schrdinger equation including Raman gain and self-steepening but ignoring fiber loss situation, the propagation characteristics of Airy pulse are simulated and analyzed in the single-mode fiber. Simulations show that Airy pulse can be converted into soliton and its propagation direction is skewed due to the effects of Raman gain and self-steepening under a certain condition. In time domain, the number of small peaks of Airy pulse reduces rapidly. Airy pulse becomes a peak structure containing a main peak and sub-peaks where the energies can be ignored by changing the coefficient a reasonablely, which is approximated as the soliton structure. Therefore, Airy pulse is regarded as transforming into soliton. Meanwhile, in the case of small values b, there exists a significant difference in shape between Airy pulse and soliton. With the value of parameter b increasing slowly, the shape of Airy pulse is very close to soliton's, therefore Airy pulse can transform into soliton by changing value b reasonablely. Compared with by changing b value, Airy pulse convered into the soliton is stable by changing the a value reasonablely. Simultaneously, with the increases of values of coefficient a and amplitude b, the time-shift of Airy pulse increases. However, the time-shift of Airy pulse would decrease when Raman gain and Self-steepening become strong, no matter what the values of a and b are. Further, the acceleration properties of Airy pulse are investigated. It is found that Airy pulse autoacceleration is not a stable value at the beginning but it gradually stabilizes with the increase of transmission distance. The reason is that the energies of secondary peaks exert a tremendous influence on the main lobe of Airy pulse at the beginning, however, secondary peaks diffuse fast with the increase of transmission and then the influence can be ignored to a certain extent. So, the main peak gradually stabilizes with the increase of transmission distance.
      通信作者: 贾维国, jwg1960@163.com
    • 基金项目: 国家自然科学基金(批准号: 61167004)和内蒙古自然科学基金(批准号: 2014MS0104)资助的课题.
      Corresponding author: Jia Wei-Guo, jwg1960@163.com
    • Funds: Project supported by the National Science Foundation of China (Grant No. 61167004) and the National Science Foundation of Inner Mongolia, China (Grant No. 2014MS0104).
    [1]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264

    [2]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

    [3]

    Siviloglou G A, Brokly J, Dogariu A, Christodoulides D 2007 Phys. Rev. Lett. 99 213901

    [4]

    Zhang L F, Liu K, Zhang H Z, Zhang J G, Li Y, Fan D Y 2015 Opt. Express 23 2566

    [5]

    Cai W Y, Matthew S M, Christodoulides D N, Wen S C 2014 Opt. Commun. 316 127

    [6]

    Yiska F, Amitay R, Marom D M 2011 Opt. Express 19 17299

    [7]

    Baldeck P L, Alfano R R, Agrawal G P 1988 Appl. Phys. Lett. 52 1939

    [8]

    Xu J, Liu J, Jia J, Wang Y T, Xie J H, Liang X Y 2010 J. Opt. 12 5705

    [9]

    Cottrell D M, Davis J A, Hazard T M 2009 Opt. Lett. 34 2634

    [10]

    Bandres M A, Gutierrez G C 2007 Opt. Express 15 16719

    [11]

    Broky J, Siviloglou G A, Christodoulides D N 2008 Opt. Express 16 12880

    [12]

    Zhang P, Wang S, Liu X, Lu C, Chen Z G, Zhang X 2011 Opt. Lett. 36 3191

    [13]

    Siviloglou G A, Broky J, Dogaru A, Christodoulides D N 2008 Opt. Lett. 33 207

    [14]

    Yu Y, Jia W G, Yan Q, Menke N M L, Zhang J P 2015 Acta Phys. Sin. 64 054207 (in Chinese) [于宇, 贾维国, 闫青, 门克内木乐, 张俊平 2015 物理学报 64 054207]

    [15]

    Yu Y, Jia W G, Yan Q, Menke N M L, Zhang J P 2015 Chin. Phys. B 24 084210

    [16]

    Yan Q, Jia W G, Yu Y, Zhang J P, Menke N M L 2015 Acta Phys. Sin. 64 184211 (in Chinese) [闫青, 贾维国, 于宇, 张俊萍, 门克内木乐 2015 物理学报 64 184211]

    [17]

    Zhu K Z, Jia W G, Zhang K, Yu Y, Zhang J P, Menke N M L 2016 Acta Phys. Sin. 65 024208 (in Chinese) [朱坤占, 贾维国, 张魁, 于宇, 张俊平, 门克内木乐 2016 物理学报 65 024208]

    [18]

    Polyn K P, Kolesik M, Moloney J V, Sivilogou G A, Christodoulides D N 2009 Science 324 229

  • [1]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264

    [2]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

    [3]

    Siviloglou G A, Brokly J, Dogariu A, Christodoulides D 2007 Phys. Rev. Lett. 99 213901

    [4]

    Zhang L F, Liu K, Zhang H Z, Zhang J G, Li Y, Fan D Y 2015 Opt. Express 23 2566

    [5]

    Cai W Y, Matthew S M, Christodoulides D N, Wen S C 2014 Opt. Commun. 316 127

    [6]

    Yiska F, Amitay R, Marom D M 2011 Opt. Express 19 17299

    [7]

    Baldeck P L, Alfano R R, Agrawal G P 1988 Appl. Phys. Lett. 52 1939

    [8]

    Xu J, Liu J, Jia J, Wang Y T, Xie J H, Liang X Y 2010 J. Opt. 12 5705

    [9]

    Cottrell D M, Davis J A, Hazard T M 2009 Opt. Lett. 34 2634

    [10]

    Bandres M A, Gutierrez G C 2007 Opt. Express 15 16719

    [11]

    Broky J, Siviloglou G A, Christodoulides D N 2008 Opt. Express 16 12880

    [12]

    Zhang P, Wang S, Liu X, Lu C, Chen Z G, Zhang X 2011 Opt. Lett. 36 3191

    [13]

    Siviloglou G A, Broky J, Dogaru A, Christodoulides D N 2008 Opt. Lett. 33 207

    [14]

    Yu Y, Jia W G, Yan Q, Menke N M L, Zhang J P 2015 Acta Phys. Sin. 64 054207 (in Chinese) [于宇, 贾维国, 闫青, 门克内木乐, 张俊平 2015 物理学报 64 054207]

    [15]

    Yu Y, Jia W G, Yan Q, Menke N M L, Zhang J P 2015 Chin. Phys. B 24 084210

    [16]

    Yan Q, Jia W G, Yu Y, Zhang J P, Menke N M L 2015 Acta Phys. Sin. 64 184211 (in Chinese) [闫青, 贾维国, 于宇, 张俊萍, 门克内木乐 2015 物理学报 64 184211]

    [17]

    Zhu K Z, Jia W G, Zhang K, Yu Y, Zhang J P, Menke N M L 2016 Acta Phys. Sin. 65 024208 (in Chinese) [朱坤占, 贾维国, 张魁, 于宇, 张俊平, 门克内木乐 2016 物理学报 65 024208]

    [18]

    Polyn K P, Kolesik M, Moloney J V, Sivilogou G A, Christodoulides D N 2009 Science 324 229

  • [1] 张霞萍. 自由空间中时空复变量自减速艾里拉盖尔高斯光束的相互作用. 物理学报, 2020, 69(2): 024204. doi: 10.7498/aps.69.20191272
    [2] 孙瑛璐, 段延敏, 程梦瑶, 袁先漳, 张立, 张栋, 朱海永. 自拉曼混频黄绿波段三波长可切换激光. 物理学报, 2020, 69(12): 124201. doi: 10.7498/aps.69.20200324
    [3] 闻远辉, 陈钰杰, 余思远. 基于焦散线方法的自加速光束设计. 物理学报, 2017, 66(14): 144210. doi: 10.7498/aps.66.144210
    [4] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华. Ge-Sb-Se硫系玻璃拉曼增益特性研究. 物理学报, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [5] 朱坤占, 贾维国, 张魁, 于宇, 张俊萍, 门克内木乐. 在反常色散区艾里脉冲与光孤子相互作用规律的研究. 物理学报, 2016, 65(2): 024208. doi: 10.7498/aps.65.024208
    [6] 闫青, 贾维国, 于宇, 张俊萍, 门克内木乐. 拉曼增益对高双折射光纤中暗孤子俘获的影响. 物理学报, 2015, 64(18): 184211. doi: 10.7498/aps.64.184211
    [7] 王美洁, 贾维国, 张思远, 门克内木乐, 杨军, 张俊萍. 低双折射光纤中拉曼增益对光偏振态的影响. 物理学报, 2015, 64(3): 034212. doi: 10.7498/aps.64.034212
    [8] 于宇, 贾维国, 闫青, 门克内木乐, 张俊萍. 拉曼散射与自陡峭效应对皮秒孤子传输特性的影响. 物理学报, 2015, 64(5): 054207. doi: 10.7498/aps.64.054207
    [9] 李淑青, 杨光晔, 李禄. Hirota方程的怪波解及其传输特性研究. 物理学报, 2014, 63(10): 104215. doi: 10.7498/aps.63.104215
    [10] 乔海龙, 贾维国, 王旭东, 刘宝林, 门克内木乐, 杨军, 张俊萍. 拉曼增益对双折射光纤中孤子传输特性的影响. 物理学报, 2014, 63(9): 094208. doi: 10.7498/aps.63.094208
    [11] 刘宝林, 贾维国, 王玉平, 乔海龙, 王旭东, 门克内木乐. 色散条件下各向同性光纤中拉曼增益对光脉冲自陡峭的影响. 物理学报, 2014, 63(21): 214207. doi: 10.7498/aps.63.214207
    [12] 柴宏宇, 贾维国, 韩凤, 门克内木乐, 杨军, 张俊萍. 保偏光纤中在不同频率区域拉曼效应和参量放大增益谱. 物理学报, 2013, 62(4): 044215. doi: 10.7498/aps.62.044215
    [13] 乔海龙, 贾维国, 刘宝林, 王旭东, 门克内木乐, 杨军, 张俊萍. 拉曼增益对孤子传输特性的影响. 物理学报, 2013, 62(10): 104212. doi: 10.7498/aps.62.104212
    [14] 贾维国, 乔丽荣, 王旭颖, 杨军, 张俊萍, 门克内木乐. 双折射光纤中拉曼效应对参量放大增益谱的影响. 物理学报, 2012, 61(9): 094215. doi: 10.7498/aps.61.094215
    [15] 贾维国, 乔丽荣, 王旭颖, 门克内木乐, 杨军, 张俊萍. 拉曼效应和参量放大共同作用下增益谱特性. 物理学报, 2012, 61(19): 194209. doi: 10.7498/aps.61.194209
    [16] 朱海永, 张戈, 张耀举, 黄呈辉, 段延敏, 魏勇, 尉鹏飞, 于永丽. LD端面抽运c切Nd:YVO4自拉曼倍频589 nm黄光激光研究. 物理学报, 2011, 60(9): 094209. doi: 10.7498/aps.60.094209
    [17] 鲁翠萍, 袁春华, 张卫平. 受激拉曼增益介质中的量子噪声特性研究. 物理学报, 2008, 57(11): 6976-6981. doi: 10.7498/aps.57.6976
    [18] 韩 琳, 宋 峰, 万从尚, 邹昌光, 闫立华, 张 康, 田建国. 自受激拉曼晶体Nd3+:SrMoO4的光谱性质研究. 物理学报, 2007, 56(3): 1751-1757. doi: 10.7498/aps.56.1751
    [19] 迟荣华, 吕可诚, 运 鹏, 李乙钢, 董孝义, 陈文钊, 杨光明, 刘兆兵. 分立式色散补偿拉曼放大器增益特性及非线性现象研究. 物理学报, 2004, 53(2): 456-460. doi: 10.7498/aps.53.456
    [20] 张喜和, 姚治海, 李晓英, 李春明, 冯克成, 王兆民. 高保偏光纤前方受激拉曼散射光谱特性的研究. 物理学报, 2003, 52(4): 840-843. doi: 10.7498/aps.52.840
计量
  • 文章访问数:  5672
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-21
  • 修回日期:  2015-12-17
  • 刊出日期:  2016-04-05

/

返回文章
返回