搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加载功率与壳温对AlGaN/GaN高速电子迁移率晶体管器件热阻的影响

郭春生 李世伟 任云翔 高立 冯士维 朱慧

引用本文:
Citation:

加载功率与壳温对AlGaN/GaN高速电子迁移率晶体管器件热阻的影响

郭春生, 李世伟, 任云翔, 高立, 冯士维, 朱慧

Influence of power dissipation and case temperature on thermal resistance of AlGaN/GaN high-speed electron mobility transistor

Guo Chun-Sheng, Li Shi-Wei, Ren Yun-Xiang, Gao Li, Feng Shi-Wei, Zhu Hui
PDF
导出引用
  • 结温是制约器件性能和可靠性的关键因素, 通常利用热阻计算器件的工作结温. 然而, 器件的热阻并不是固定值, 它随器件的施加功率、温度环境等工作条件的改变而变化. 针对该问题, 本文以CREE公司生产的高速电子迁移率晶体管(HEMT)器件为研究对象, 利用红外热像测温法与Sentaurus TCAD模拟法相结合, 测量研究了AlGaN/GaN HEMT器件在不同加载功率以及管壳温度下热阻的变化规律. 研究发现: 当器件壳温由80 ℃升高至130 ℃时, 其热阻由5.9 ℃/W变化为6.8 ℃/W, 增大15%, 其热阻与结温呈正反馈效应; 当器件的加载功率从2.8 W增加至14 W时, 其热阻从5.3 ℃/W变化为6.5 ℃/W, 增大22%. 对其热阻变化机理的研究发现: 在不同的管壳温度以及不同的加载功率条件下, 由于材料导热系数的变化导致其热阻随温度与加载功率的变化而变化.
    The junction temperature is a main factor affecting the device performance and reliability. The thermal resistance is usually used to calculate the junction temperature. However, the thermal resistance is not constant under different operating conditions. In this work, we examine the high-speed electron mobility transistor (HEMT) from the CREE Company to investigate its thermal resistances under different case temperatures and dissipation powers. To avoid the self-oscillating phenomenon of the HEMT device, a circuit is designed to prevent the self-oscillating in experiment. First, the temperatures of the active region of the GaN HEMT device are measured by the infrared image method under different dissipation powers (including 2.8, 5.6, 8.4, 11.2, and 14 W) and different case temperatures, respectively. Then according to the result of infrared image method, the simulation model is set up by using the Sentaurus TCAD. From the final optimized model, we extract the device junction temperature and calculate the thermal resistance. It is expected to ascertain the characteristic of the thermal resistance and compare it with the result from the infrared image method. It is found that as the device case temperature increases from 80 ℃ to 130 ℃, the thermal resistance changes from 5.9 ℃/W to 6.8 ℃/W, i.e., it is increased by 15%. When the power increases from 2.8 W to 14 W, the thermal resistance changes from 5.3 ℃/W to 6.5 ℃/W, i.e., it is increased by 22%. This phenomenon is mainly attributed to the changes of the thermal conductivity of device materials. According to the formula for the coefficient of the thermal conductivity of nonmetallic material SiC, the phonon scattering rate becomes larger with the increase of temperature. Thus, the phonon mean free path can decrease by reducing the average freedom time. Finally, the coefficient of thermal conductivity becomes smaller. It was reported by Kotchetkov et al. (Kotchetkov D, Zou J, Balandin A A, Florescu D I 2001 Appl. Phys. Lett. 79 4316) that the coefficient of thermal conductivity of GaN becomes smaller under high temperature. All of these have an effect on the heat dissipation of the device, which will cause the thermal resistance to increase. Based on the result from the infrared image method and TCAD simulation, the changing characteristic of the thermal resistance is obtained, thereby reducing the errors in the calculation of the junction temperature.
      通信作者: 郭春生, guocs@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61204081)和北京市教委基金(批准号: KM201510005008)资助的课题.
      Corresponding author: Guo Chun-Sheng, guocs@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61204081) and the Foundation of Beijing Municipal Education Commission, China (Grant No. KM201510005008).
    [1]

    Zhang G C 2012 Ph. D. Dissertation (Beijing: Beijing University of Technology) (in Chinese) [张光沉 2012 博士学位论文 (北京: 北京工业大学)]

    [2]

    Kuball M, Riedel G J, Pomeroy J W, Sarua A, Uren M J, Martin T, Hilton K P, Maclean J O, Wallis D J 2007 IEEE Trans. Electron Dev. 28 86

    [3]

    Ying S P, Fu H K, Tang W F, Hong R C 2014 IEEE Trans. Electron Dev. 61 2843

    [4]

    Dong C X Wang L X 2013 Chin J Electron Dev. 36 755 (in Chinese) [董晨曦, 王立新 2013 电子器件 36 755]

    [5]

    Yu C H, Luo X D, Zhou W Z, Luo Q Z, Liu P S 2012 Acta Phys. Sin. 61 207301 (in Chinese) [余晨辉, 罗向东, 周文政, 罗庆洲, 刘培生 2012 物理学报 61 207301]

    [6]

    Zhang Y, Feng S, Zhu H, Zhang J, Deng B 2013 Microelectron. Reliab. 53 694

    [7]

    Gu J, Wang Q, Lu H 2011 Acta Phys. Sin. 60 077107 (in Chinese) [顾江, 王强, 鲁宏 2011 物理学报 60 077107]

    [8]

    Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE Trans. Electron Dev. 59 1393

    [9]

    Fischer A J, Allerman A A, Crawford M H, Bogart K H A, Lee S R, Kaplar R J 2004 Appl. Phys. Lett. 84 3394

    [10]

    Rajasingam S, Pomeroy J W, Kuball M, Uren M J, Martin T, Herbert D C, Herbert, Hilton K P, Balmer R S 2004 IEEE Electron Dev. Lett. 25 456

    [11]

    Kotchetkov D, Zou J, Balandin A A, Florescu D I 2001 Appl. Phys. Lett. 79 4316

  • [1]

    Zhang G C 2012 Ph. D. Dissertation (Beijing: Beijing University of Technology) (in Chinese) [张光沉 2012 博士学位论文 (北京: 北京工业大学)]

    [2]

    Kuball M, Riedel G J, Pomeroy J W, Sarua A, Uren M J, Martin T, Hilton K P, Maclean J O, Wallis D J 2007 IEEE Trans. Electron Dev. 28 86

    [3]

    Ying S P, Fu H K, Tang W F, Hong R C 2014 IEEE Trans. Electron Dev. 61 2843

    [4]

    Dong C X Wang L X 2013 Chin J Electron Dev. 36 755 (in Chinese) [董晨曦, 王立新 2013 电子器件 36 755]

    [5]

    Yu C H, Luo X D, Zhou W Z, Luo Q Z, Liu P S 2012 Acta Phys. Sin. 61 207301 (in Chinese) [余晨辉, 罗向东, 周文政, 罗庆洲, 刘培生 2012 物理学报 61 207301]

    [6]

    Zhang Y, Feng S, Zhu H, Zhang J, Deng B 2013 Microelectron. Reliab. 53 694

    [7]

    Gu J, Wang Q, Lu H 2011 Acta Phys. Sin. 60 077107 (in Chinese) [顾江, 王强, 鲁宏 2011 物理学报 60 077107]

    [8]

    Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE Trans. Electron Dev. 59 1393

    [9]

    Fischer A J, Allerman A A, Crawford M H, Bogart K H A, Lee S R, Kaplar R J 2004 Appl. Phys. Lett. 84 3394

    [10]

    Rajasingam S, Pomeroy J W, Kuball M, Uren M J, Martin T, Herbert D C, Herbert, Hilton K P, Balmer R S 2004 IEEE Electron Dev. Lett. 25 456

    [11]

    Kotchetkov D, Zou J, Balandin A A, Florescu D I 2001 Appl. Phys. Lett. 79 4316

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响. 物理学报, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 蒋福春, 刘瑞友, 彭冬生, 刘文, 柴广跃, 李百奎, 武红磊. 基于光谱法的发光二极管稳态热阻测量方法. 物理学报, 2021, 70(9): 098501. doi: 10.7498/aps.70.20201093
    [3] 刘乃漳, 姚若河, 耿魁伟. AlGaN/GaN高电子迁移率晶体管的栅极电容模型. 物理学报, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [4] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理. 物理学报, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [5] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [6] 刘康, 孙华锐. 基于拉曼热测量技术的铜基复合物法兰GaN基晶体管的热阻分析. 物理学报, 2020, 69(2): 028501. doi: 10.7498/aps.69.20190921
    [7] 王凯, 邢艳辉, 韩军, 赵康康, 郭立建, 于保宁, 邓旭光, 范亚明, 张宝顺. 掺Fe高阻GaN缓冲层特性及其对AlGaN/GaN高电子迁移率晶体管器件的影响研究. 物理学报, 2016, 65(1): 016802. doi: 10.7498/aps.65.016802
    [8] 杨爱波, 陈林根, 谢志辉, 孙丰瑞. 矩形肋片热沉(火积)耗散率最小与最大热阻最小构形优化的比较研究. 物理学报, 2015, 64(20): 204401. doi: 10.7498/aps.64.204401
    [9] 谷文萍, 张林, 李清华, 邱彦章, 郝跃, 全思, 刘盼枝. 中子辐照对AlGaN/GaN高电子迁移率晶体管器件电特性的影响. 物理学报, 2014, 63(4): 047202. doi: 10.7498/aps.63.047202
    [10] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟. 物理学报, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [11] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [12] 陈海鹏, 曹军胜, 郭树旭. 高功率半导体激光器结温与1/f噪声的关系研究. 物理学报, 2013, 62(10): 104209. doi: 10.7498/aps.62.104209
    [13] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [14] 吕玲, 张进成, 李亮, 马晓华, 曹艳荣, 郝跃. 3 MeV质子辐照对AlGaN/GaN高电子迁移率晶体管的影响. 物理学报, 2012, 61(5): 057202. doi: 10.7498/aps.61.057202
    [15] 顾江, 王强, 鲁宏. AlGaN/GaN 高速电子迁移率晶体管器件电流坍塌效应与界面热阻和温度的研究. 物理学报, 2011, 60(7): 077107. doi: 10.7498/aps.60.077107
    [16] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究. 物理学报, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [17] 韩勇, 刘燕文, 丁耀根, 刘濮鲲. 螺旋线慢波结构中界面热阻率的研究. 物理学报, 2009, 58(3): 1806-1811. doi: 10.7498/aps.58.1806
    [18] 柳雄斌, 过增元. 换热器性能分析新方法. 物理学报, 2009, 58(7): 4766-4771. doi: 10.7498/aps.58.4766
    [19] 魏 巍, 郝 跃, 冯 倩, 张进城, 张金凤. AlGaN/GaN场板结构高电子迁移率晶体管的场板尺寸优化分析. 物理学报, 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [20] 林若兵, 王欣娟, 冯 倩, 王 冲, 张进城, 郝 跃. AlGaN/GaN高电子迁移率晶体管肖特基高温退火机理研究. 物理学报, 2008, 57(7): 4487-4491. doi: 10.7498/aps.57.4487
计量
  • 文章访问数:  5455
  • PDF下载量:  249
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-21
  • 修回日期:  2016-01-25
  • 刊出日期:  2016-04-05

/

返回文章
返回