搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紫外光辐照对TiO2纳米线电输运性能的影响及磁阻效应研究

孙志刚 庞雨雨 胡靖华 何雄 李月仇

引用本文:
Citation:

紫外光辐照对TiO2纳米线电输运性能的影响及磁阻效应研究

孙志刚, 庞雨雨, 胡靖华, 何雄, 李月仇

Electronic transportation properties and magnetoresistance effects on single TiO2 nanowire under ultraviolet irradiation

Sun Zhi-Gang, Pang Yu-Yu, Hu Jing-Hua, He Xiong, Li Yue-Chou
PDF
导出引用
  • 采用溶胶凝胶法以及静电纺丝法, 利用热处理工艺, 成功制备出了多晶锐钛矿型TiO2纳米线, 通过两线法在室温下测试单根TiO2纳米线的V-I曲线来研究其电输运性能及磁阻效应. 结果表明: 在无光照环境下其V-I曲线为不过零点的直线, 零场电阻较大, 在磁场作用下电阻下降, 表现出负磁阻效应; 紫外光辐照环境下TiO2纳米线载流子浓度增加使得电阻变小, 然而在磁场作用下电阻增大, 表现为正磁阻效应. 紫外光辐照导致的载流子浓度变化, 使得负磁阻转变为正磁阻, 我们将磁阻变化归结为d电子局域导致的负磁阻与能带劈裂导致的正磁阻两种机理相互竞争的结果.
    The polycrystalline anatase TiO2 nanowires with a diameter of about 300 nm are successfully prepared by the sol-gel method together with electrospinning method under a heat treatment at 500℃. The effect of illumination on electronic transport property and magnetoresistance (MR) effect are studied via voltage-current (V-I) curves measured at room temperature in the cases of the dark and the ultraviolet irradiation. The results show that the V-I plots are straight lines without passing through zero point and the resistance of the nanowire is as high as 7.51011 in the dark. The resistance decreases gradually with the magnetic field increasing and after reaching a minimum 4.71011 at B=0.7 T it turns to increase rapidly, but is still smaller than the resistance without magnetic field, indicating a negative MR effect. With the increase of the magnetic field, the negative MR effect increases and then decreases, and the negative MR achieves a maximum value of -37.5% under B=0.7 T. Interestingly, the resistance of nanowires in the ultraviolet irradiation is reduced by about 10 times compared with that in the dark without applying a magnetic field. As the magnetic field increases, the resistance increases monotonically, presenting a positive MR effect. The MR increases rapidly with the increase of magnetic field, and reaches the maximum positive MR effect 620% under B=1.0 T. At room temperature only a few carriers are generated by the thermal excitation in the TiO2 nanowires, which leads to a large resistance in the dark situation. In the ultraviolet irradiation case, the carrier concentration of the nanowires increases because of the generation of a large number of electron-hole pairs, resulting in huge decrease of resistance compared with in the dark. We attribute the change of the MR to the competition betwen two MR mechanisms: negative MR effect due to the localization of d electron and positive MR effect due to spin splitting of the conduction band. In the dark, due to the low carrier concentration, the negative MR mechanism caused by the localization of d electron is dominant under the magnetic field. However, in the ultraviolet irradiation, because carrier concentration increases hugely due to the irradiation, the positive MR mechanism caused by spin splitting of the conduction band is dominant. The fact that the V-I curves does not pass through zero point implies that the contact between TiO2 nanowire and Pt metal is Schottky contact due to the difference in work function. In the dark, the initial voltage first increases with the increase of magnetic field, and then remains steady. In the ultraviolet irradiation the initial voltage is smaller than in the dark and increases monotonically with the magnetic field increasing. In this paper, the physical mechanism of the electrical transport property and MR effect of TiO2 nanowire are discussed, which may provide a meaningful exploration for developing the new electronic device based on the oxide nanowires.
      通信作者: 孙志刚, sun_zg@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11574243, 11174231)和材料复合新技术国家重点实验室(武汉理工大学)开放基金(批准号: 2016-KF-13)资助的课题.
      Corresponding author: Sun Zhi-Gang, sun_zg@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574243, 11174231), and the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology), China (Grant No. 2016-KF-13).
    [1]

    Zhao F 2011 M. S. Dissertation (Harbin: Harbin Institute Technology) (in Chinese) [赵峰 2011 硕士学位论文(哈尔滨: 哈尔滨工业大学)]

    [2]

    Zhang H N 2011 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [张弘楠 2011 博士学位论文(长春: 吉林大学)]

    [3]

    Meng D, Yamazaki T, Kikuta T 2014 Sens. Actuator B 190 838

    [4]

    Li H 2013 M. S. Dissertation (Wuhan: Wuhan University of Technology) (in Chinese) [李寒 2013 硕士学位论文(武汉: 武汉理工大学)]

    [5]

    Peng R X, Chen C, Shen W, Guo Y, Geng H W, Wang M T 2009 Acta Phys. Sin. 58 6582 (in Chinese) [彭瑞祥, 陈冲, 沈薇, 郭颖, 耿宏伟, 王命泰 2009 物理学报 58 6582]

    [6]

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212 (in Chinese) [李冬冬, 王丽莉 2012 物理学报 61 034212]

    [7]

    Liang P, Wang L, Xiong S Y, Dong Q M, Li X Y 2012 Acta Phys. Sin. 61 053101 (in Chinese) [梁培, 王乐, 熊斯雨, 董前民, 李晓艳 2012 物理学报 61 053101]

    [8]

    Sani S R 2014 Chin. Phys. B 23 107302

    [9]

    Zhang L, Huang B, Liu Y, Zhang L, Zhang R, Mei L 2003 J. Magn. Magn. Mater. 261 257

    [10]

    Peleckis G, Wang X L, Dou S X, Munroe P, Ding J, Lee B 2008 J. Appl. Phys. 103 07D113

    [11]

    Xu Q, Hartmann L, Schmidt H, Hochmuth H, Lorenz M, Spemann D, Grundmann M 2007 Phys. Rev. B 76 134417

    [12]

    Wang D F, Kim J M, Thuy V T T, Seo M S, Lee Y P 2011 J. Korean Phys. Soc. 58 1304

    [13]

    Hartmann L, Xu Q, Schmidt H, Hochmuth H, Lorenz M, Sturm C, Meinecke C, Grundmann M 2006 J. Phys. D 39 4920

    [14]

    Reuss F, Frank S, Kirchner C, Kling R, Gruber T, Waag A 2005 Appl. Phys. Lett. 87 112104

    [15]

    Liang W J, Yuhas B D, Yang P D 2009 Nano Lett. 9 892

    [16]

    Tian Y F, Yan S, Cao Q, Deng J X, Chen Y X, Liu G L, Mei L M, Qiang Y 2009 Phys. Rev. B 79 115209

    [17]

    Tian Y F, Antony J, Souza R, Yan S S, Mei L M, Qiang Y 2008 Appl. Phys. Lett. 92 192109

    [18]

    Jabeen M, Iqbal M A, Kumar R V, Ahmed M, Javed M T 2014 Chin. Phys. B 23 018504

    [19]

    Yu X X, Zhou Y, Liu J, Jin H B, Fang X Y, Cao M S 2015 Chin. Phys. B 24 127307

    [20]

    Akinaga H, Mizuguchi M, Ono K, Oshima M 2000 Appl. Phys. Lett. 76 2600

    [21]

    Shon Y, Yuldashev S U, Fan X J, Fu D J, Kwon Y H, Hong C Y, Kang T W 2001 Jpn. J. Appl. Phys. 40 3082

    [22]

    Viana E R, Ribeiro G M, Oliveira A G, Peres M L, Rubinger R M, Rubinger C P L 2012 Mater. Res. 15 530

  • [1]

    Zhao F 2011 M. S. Dissertation (Harbin: Harbin Institute Technology) (in Chinese) [赵峰 2011 硕士学位论文(哈尔滨: 哈尔滨工业大学)]

    [2]

    Zhang H N 2011 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [张弘楠 2011 博士学位论文(长春: 吉林大学)]

    [3]

    Meng D, Yamazaki T, Kikuta T 2014 Sens. Actuator B 190 838

    [4]

    Li H 2013 M. S. Dissertation (Wuhan: Wuhan University of Technology) (in Chinese) [李寒 2013 硕士学位论文(武汉: 武汉理工大学)]

    [5]

    Peng R X, Chen C, Shen W, Guo Y, Geng H W, Wang M T 2009 Acta Phys. Sin. 58 6582 (in Chinese) [彭瑞祥, 陈冲, 沈薇, 郭颖, 耿宏伟, 王命泰 2009 物理学报 58 6582]

    [6]

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212 (in Chinese) [李冬冬, 王丽莉 2012 物理学报 61 034212]

    [7]

    Liang P, Wang L, Xiong S Y, Dong Q M, Li X Y 2012 Acta Phys. Sin. 61 053101 (in Chinese) [梁培, 王乐, 熊斯雨, 董前民, 李晓艳 2012 物理学报 61 053101]

    [8]

    Sani S R 2014 Chin. Phys. B 23 107302

    [9]

    Zhang L, Huang B, Liu Y, Zhang L, Zhang R, Mei L 2003 J. Magn. Magn. Mater. 261 257

    [10]

    Peleckis G, Wang X L, Dou S X, Munroe P, Ding J, Lee B 2008 J. Appl. Phys. 103 07D113

    [11]

    Xu Q, Hartmann L, Schmidt H, Hochmuth H, Lorenz M, Spemann D, Grundmann M 2007 Phys. Rev. B 76 134417

    [12]

    Wang D F, Kim J M, Thuy V T T, Seo M S, Lee Y P 2011 J. Korean Phys. Soc. 58 1304

    [13]

    Hartmann L, Xu Q, Schmidt H, Hochmuth H, Lorenz M, Sturm C, Meinecke C, Grundmann M 2006 J. Phys. D 39 4920

    [14]

    Reuss F, Frank S, Kirchner C, Kling R, Gruber T, Waag A 2005 Appl. Phys. Lett. 87 112104

    [15]

    Liang W J, Yuhas B D, Yang P D 2009 Nano Lett. 9 892

    [16]

    Tian Y F, Yan S, Cao Q, Deng J X, Chen Y X, Liu G L, Mei L M, Qiang Y 2009 Phys. Rev. B 79 115209

    [17]

    Tian Y F, Antony J, Souza R, Yan S S, Mei L M, Qiang Y 2008 Appl. Phys. Lett. 92 192109

    [18]

    Jabeen M, Iqbal M A, Kumar R V, Ahmed M, Javed M T 2014 Chin. Phys. B 23 018504

    [19]

    Yu X X, Zhou Y, Liu J, Jin H B, Fang X Y, Cao M S 2015 Chin. Phys. B 24 127307

    [20]

    Akinaga H, Mizuguchi M, Ono K, Oshima M 2000 Appl. Phys. Lett. 76 2600

    [21]

    Shon Y, Yuldashev S U, Fan X J, Fu D J, Kwon Y H, Hong C Y, Kang T W 2001 Jpn. J. Appl. Phys. 40 3082

    [22]

    Viana E R, Ribeiro G M, Oliveira A G, Peres M L, Rubinger R M, Rubinger C P L 2012 Mater. Res. 15 530

  • [1] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量. 物理学报, 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [2] 聂晓蕾, 余灏成, 朱婉婷, 桑夏晗, 魏平, 赵文俞. 石墨烯/Bi0.5Sb1.5Te3柔性热电薄膜及其面内散热器件的设计制备与性能评价. 物理学报, 2022, 71(15): 157301. doi: 10.7498/aps.71.20220358
    [3] 王伟, 柳伟, 谢森, 葛浩然, 欧阳雨洁, 张程, 华富强, 张敏, 唐新峰. MnTe单晶薄膜的外延制备、本征点缺陷结构及电输运优化. 物理学报, 2022, 71(13): 137102. doi: 10.7498/aps.71.20212350
    [4] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下TiO2纳米线晶粒和晶界性质及电输运行为. 物理学报, 2022, 71(9): 096101. doi: 10.7498/aps.71.20212276
    [5] 何斌, 何雄, 刘国强, 朱璨, 王嘉赋, 孙志刚. SnSe2的忆阻及磁阻效应. 物理学报, 2020, 69(11): 117301. doi: 10.7498/aps.69.20200160
    [6] 陈单, 石丹丹, 潘贵军. 复杂网络电输运性能与通信序列熵之间的关联. 物理学报, 2019, 68(11): 118901. doi: 10.7498/aps.68.20190230
    [7] 王娜, 马洋, 陈长松, 陈江, 伞海生, 陈继革, 成正东. 基于一维TiO2纳米管阵列薄膜的伏特效应研究. 物理学报, 2018, 67(4): 047901. doi: 10.7498/aps.67.20171903
    [8] 陈亚琦, 许华慨, 唐东升, 余芳, 雷乐, 欧阳钢. 单根SnO2纳米线器件的电输运性能及其机理研究. 物理学报, 2018, 67(24): 246801. doi: 10.7498/aps.67.20181402
    [9] 余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华. 基于Au/TiO2/FTO结构忆阻器的开关特性与机理研究. 物理学报, 2018, 67(15): 157302. doi: 10.7498/aps.67.20180425
    [10] 王德, 沈容, 刘灿灿, 韦世强, 陆坤权. 纳米TiO2颗粒对电流变悬浮液中硅油的挥发增强效应. 物理学报, 2015, 64(15): 154704. doi: 10.7498/aps.64.154704
    [11] 王疆靖, 邵瑞文, 邓青松, 郑坤. 应变加载下Si纳米线电输运性能的原位电子显微学研究. 物理学报, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [12] 张明琪, 王育华, 董鹏玉, 张佳. 静电纺丝法制备Bi2Fe4O9及其磁学性能的研究. 物理学报, 2012, 61(23): 238102. doi: 10.7498/aps.61.238102
    [13] 哈日巴拉, 师兰, 姜磊, 郭金毓, 原光瑜, 王李波, 刘宗瑞. 纳米TiO2叶片状阵列电极的制备及其在染料敏化太阳电池中电子的输运性能. 物理学报, 2011, 60(8): 088101. doi: 10.7498/aps.60.088101
    [14] 吴雪炜, 吴大建, 刘晓峻. 硼(氮、氟)掺杂对TiO2纳米颗粒光学性能的影响. 物理学报, 2010, 59(7): 4788-4793. doi: 10.7498/aps.59.4788
    [15] 向军, 宋福展, 沈湘黔, 褚艳秋. 一维Ni0.5Zn0.5Fe2O4/SiO2复合纳米结构的制备及其磁性能. 物理学报, 2010, 59(7): 4794-4801. doi: 10.7498/aps.59.4794
    [16] 张飞鹏, 路清梅, 张久兴, 张忻. 双掺杂BaxAgyCa3-x-yCo4O9氧化物的织构与电输运性能. 物理学报, 2009, 58(4): 2697-2701. doi: 10.7498/aps.58.2697
    [17] 赵建华, 陈 勃, 王德亮. 纳米晶锐钛矿相TiO2的非简谐效应和声子局域. 物理学报, 2008, 57(5): 3077-3084. doi: 10.7498/aps.57.3077
    [18] 胡林华, 戴松元, 王孔嘉. 纳米TiO2多孔膜的微结构对染料敏化纳米薄膜太阳电池性能的影响. 物理学报, 2005, 54(4): 1914-1918. doi: 10.7498/aps.54.1914
    [19] 孔春阳, 王万录, 廖克俊, 马勇, 王蜀霞, 方亮. p型半导体金刚石膜的磁阻效应. 物理学报, 2001, 50(8): 1616-1622. doi: 10.7498/aps.50.1616
    [20] 张鸿飞, 汪良主, 张立德, 吴希俊. 金红石相纳米块材TiO2的介电特性. 物理学报, 1996, 45(6): 1046-1050. doi: 10.7498/aps.45.1046
计量
  • 文章访问数:  4734
  • PDF下载量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-07
  • 修回日期:  2016-02-15
  • 刊出日期:  2016-05-05

/

返回文章
返回