搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率梯度掺杂增益光纤温度特性理论研究

周子超 王小林 陶汝茂 张汉伟 粟荣涛 周朴 许晓军

引用本文:
Citation:

高功率梯度掺杂增益光纤温度特性理论研究

周子超, 王小林, 陶汝茂, 张汉伟, 粟荣涛, 周朴, 许晓军

Theoretical study of the temperature distribution in high power gain fiber of gradient doping

Zhou Zi-Chao, Wang Xiao-Lin, Tao Ru-Mao, Zhang Han-Wei, Su Rong-Tao, Zhou Pu, Xu Xiao-Jun
PDF
导出引用
  • 在高功率光纤激光器中, 增益光纤的热效应是限制激光功率进一步提高的重要因素之一. 为了降低增益光纤的最高温度, 提出了一种通过改变增益光纤的掺杂浓度分布, 分散光纤激光的热效应, 从而提高激光输出功率的方法. 基于速率方程模型和热传导模型, 在光纤激光放大器输出功率大致相当的情况下, 对几种不同掺杂方式下增益光纤中的热分布和放大器的输出功率进行了数值模拟. 研究结果表明: 增益光纤的梯度掺杂可以优化光纤中的温度分布并提高光纤熔接点的稳定性; 同时兼具提高输出光束的光束质量、抑制光纤中非线性效应和模式不稳定的效果, 是提高光纤激光放大器输出功率切实可行的办法. 研究结果可以为高功率光纤激光器中增益光纤的设计提供一定的参考.
    Thermal effect in the gain fiber is one of the main factors which restrict the power improvement of high power fiber amplifiers. Previous studies have shown that the temperature distribution is closely related to the doping concentration along the gain fiber. In order to reduce the maximum temperature of the gain fiber, we propose to use doping concentration varying along the gain fiber as a method to disperse the thermal effect of the fiber laser and improve the laser output power. Based on the rate equation model and thermal conduction model, the thermal distributions and output powers of several different gradient doping gain fibers are simulated in the cases where the output powers are approximately the same. Our study shows that compared with the conventional constant doping gain fiber, linear doping of the rare earth ion along the gain fiber can reduce the maximum temperature of the gain fiber as well as the temperature of the fusion point greatly, thus improving the stabilities of the fusion point and the fiber laser amplifier. In the case of cosinoidal doping, the gain fiber can not only reduce the temperature of the fusion point but also make the temperature have a periodic distribution along the gain fiber, which can suppress the stimulated Brillouin scattering effect effectively. The exponential doping of the gain fiber can also reduce the maximum temperature and the temperature of the fusion point, which is beneficial to the further scaling of the fiber laser output power. At the same time, it can make the gain of the signal light have a uniform distribution along the gain fiber, which suppresses the mode instability effect and improves the output beam quality of the fiber laser. These conclusions also hold true when the pump power changes. Therefore, the gradient doping of the gain fiber proposed in this paper can optimize the temperature distribution along the fiber and improve the stability of the fusion point. Besides, it can improve the beam quality of the output laser and suppress the nonlinear effect and mode instability effect. The results indicate that the gradient doping of the gain fiber is an effective and feasible way to improve the output power of fiber amplifier. Last but not the least, it is possible to produce the gradient doping gain fiber by the laser heated pedestal growth method and the direct nanoparticle deposition technique. The investigation can present a reference for designing the gain fiber in high-power fiber laser systems.
      通信作者: 王小林, chinawxllin@163.com
    • 基金项目: 国家自然科学基金(批准号:61505260)资助的课题.
      Corresponding author: Wang Xiao-Lin, chinawxllin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505260).
    [1]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63

    [2]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554

    [3]

    Limpert J, Roser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R, Tiinnermann A 2007 IEEE J. Sel. Top. Quant. 13 537

    [4]

    Huang X J, Liu Y Z, Sui Z, Li M Z, Chen H Y, Lin H H 2004 J. Appl. Opt. 6 16 (in Chinese) [黄绣江, 刘永智, 隋展, 李明中, 陈海燕, 林宏奂 2004 应用光学 6 16]

    [5]

    Cui L, Zhang Y C, He D Y, Li X Y, Jiang J M 2012 Journal of Lasers 36 154 (in Chinese) [崔丽, 张彦超, 贺定勇, 李晓延, 蒋建敏 2012 激光技术 36 154]

    [6]

    Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quant. 20 219

    [7]

    Zhang S, Wang X 2013 Opt. Commun. 295 155

    [8]

    Fan Y, He B, Zhou J, Zheng J, Liu H, Wei Y, Dong J, Lou Q 2011 Opt. Express 19 15162

    [9]

    Lapointe M, Chatigny S, Pich M, Cain-Skaff M, Maran J 2009 SPIE LASE Lasers and Applications in Science and Engineering, Quebc, Canada, February 19, 2009 p71951U

    [10]

    Chen Z L, Hou J, Jiang Z F 2007 Journal of Lasers 31 544 (in Chinese) [陈子伦, 侯静,姜宗福 2007 激光技术 31 544]

    [11]

    Xiao H 2012 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [肖虎 2012 博士学位论文(长沙: 国防科学技术大学)]

    [12]

    Chang Y M, Yao T, Jeong H, Ji J, Yoo S, May-Smith T C, Sahu J K, Nilsson J 2014 Conference on Lasers and Electro-Optics(CLEO) San Jose, California, United States June 8-13, 2014 p1

    [13]

    Xiong Y 2006 M. S. Thesis (Chengdu: Southwest Jiaotong University) (in Chinese) [熊悦 2006 硕士学位论文(成都: 西南交通大学)]

    [14]

    Huang Y H, Huang L, Zhang H T, Liu Q, Yan P, Gong M L 2009 Journal of Lasers 33 225 (in Chinese) [黄云火, 黄磊, 张海涛, 柳强, 闫平, 巩马理 2009 激光技术 33 225]

    [15]

    Ye B Y 2014 M. S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese) [叶宝圆 2014 硕士学位论文(武汉: 华中科技大学)]

    [16]

    Elahi P, Yilmaz S, Akcaalan O, Kalaycioglu H, Oktem B, Senel C, Ilday F O, Eken K 2012 Opt. Lett. 37 3042

    [17]

    Liu A 2007 Opt. Express 15 977

    [18]

    Ward B, Robin C, Dajani I 2012 Opt. Express 20 11407

    [19]

    Laversenne L, Goutaudier C, Guyot Y, Cohen-Adad M T, Boulon G 2002 J. Alloy. Compd. 341 214

    [20]

    Boulon G, Laversenne L, Goutaudier C, Guyot Y, Cohen-Adad M T 2003 J. Lumin. 102 417

    [21]

    Tammela S, Serlund M, Koponen J, Philippov V, Stenius P 2006 Integrated Optoelectronic Devices San Jose, California, United states January 21, 2006 p61160G

    [22]

    Liao S Y, Gong M L 2007 Laser Opt. Prog. 44 27 (in Chinese) [廖素英,巩马理 2007 激光与光电子学进展 44 27]

    [23]

    Kelson I, Hardy A 1998 IEEE J. Quantum Elect. 34 1570

    [24]

    Kelson I, Hardy A 1999 J. Lightwave Technol. 17 891

    [25]

    Wang X, Tao R, Zhang H, Zhou P, Xu X 2014 Chinese Laser 11 119 (in Chinese) [王小林,陶汝茂,张汉伟,周朴,许晓军 2014 中国激光 11 119]

    [26]

    Brown D C, Hoffman H J 2001 IEEE J. Quantum Elect. 37 207

    [27]

    Smith A V, Smith J 2013 Opt. Express 21 2606

    [28]

    Kirchhof J, Unger S, Schwuchow A, Jetschke S, Knappe B 2005 Integrated Optoelectronic Devices San Jose, California, United States, January 22, 2005 p261

    [29]

    www.nufern.com/[2016-2-3]

    [30]

    Jeong Y, Nilsson J, Sahu J K, Payne D N, Horley R, Hickey L M B, Turner P W 2007 IEEE J. Quantum Elect. 13 546

    [31]

    Brar K, Savage-Leuchs M, Henrie J, Courtney S, Dilley C, Afzal R, Honea E 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, San Francisco, California, United States, February 01, 2014 p89611R

    [32]

    Tao R M, Wang X L, Xiao H, Zhou P, Liu Z J 2014 Acta Opt. Sin. 34 134 (in Chinese) [陶汝茂,王小林,肖虎,周朴,刘泽金 2014 光学学报 34 134]

  • [1]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63

    [2]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554

    [3]

    Limpert J, Roser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R, Tiinnermann A 2007 IEEE J. Sel. Top. Quant. 13 537

    [4]

    Huang X J, Liu Y Z, Sui Z, Li M Z, Chen H Y, Lin H H 2004 J. Appl. Opt. 6 16 (in Chinese) [黄绣江, 刘永智, 隋展, 李明中, 陈海燕, 林宏奂 2004 应用光学 6 16]

    [5]

    Cui L, Zhang Y C, He D Y, Li X Y, Jiang J M 2012 Journal of Lasers 36 154 (in Chinese) [崔丽, 张彦超, 贺定勇, 李晓延, 蒋建敏 2012 激光技术 36 154]

    [6]

    Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quant. 20 219

    [7]

    Zhang S, Wang X 2013 Opt. Commun. 295 155

    [8]

    Fan Y, He B, Zhou J, Zheng J, Liu H, Wei Y, Dong J, Lou Q 2011 Opt. Express 19 15162

    [9]

    Lapointe M, Chatigny S, Pich M, Cain-Skaff M, Maran J 2009 SPIE LASE Lasers and Applications in Science and Engineering, Quebc, Canada, February 19, 2009 p71951U

    [10]

    Chen Z L, Hou J, Jiang Z F 2007 Journal of Lasers 31 544 (in Chinese) [陈子伦, 侯静,姜宗福 2007 激光技术 31 544]

    [11]

    Xiao H 2012 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [肖虎 2012 博士学位论文(长沙: 国防科学技术大学)]

    [12]

    Chang Y M, Yao T, Jeong H, Ji J, Yoo S, May-Smith T C, Sahu J K, Nilsson J 2014 Conference on Lasers and Electro-Optics(CLEO) San Jose, California, United States June 8-13, 2014 p1

    [13]

    Xiong Y 2006 M. S. Thesis (Chengdu: Southwest Jiaotong University) (in Chinese) [熊悦 2006 硕士学位论文(成都: 西南交通大学)]

    [14]

    Huang Y H, Huang L, Zhang H T, Liu Q, Yan P, Gong M L 2009 Journal of Lasers 33 225 (in Chinese) [黄云火, 黄磊, 张海涛, 柳强, 闫平, 巩马理 2009 激光技术 33 225]

    [15]

    Ye B Y 2014 M. S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese) [叶宝圆 2014 硕士学位论文(武汉: 华中科技大学)]

    [16]

    Elahi P, Yilmaz S, Akcaalan O, Kalaycioglu H, Oktem B, Senel C, Ilday F O, Eken K 2012 Opt. Lett. 37 3042

    [17]

    Liu A 2007 Opt. Express 15 977

    [18]

    Ward B, Robin C, Dajani I 2012 Opt. Express 20 11407

    [19]

    Laversenne L, Goutaudier C, Guyot Y, Cohen-Adad M T, Boulon G 2002 J. Alloy. Compd. 341 214

    [20]

    Boulon G, Laversenne L, Goutaudier C, Guyot Y, Cohen-Adad M T 2003 J. Lumin. 102 417

    [21]

    Tammela S, Serlund M, Koponen J, Philippov V, Stenius P 2006 Integrated Optoelectronic Devices San Jose, California, United states January 21, 2006 p61160G

    [22]

    Liao S Y, Gong M L 2007 Laser Opt. Prog. 44 27 (in Chinese) [廖素英,巩马理 2007 激光与光电子学进展 44 27]

    [23]

    Kelson I, Hardy A 1998 IEEE J. Quantum Elect. 34 1570

    [24]

    Kelson I, Hardy A 1999 J. Lightwave Technol. 17 891

    [25]

    Wang X, Tao R, Zhang H, Zhou P, Xu X 2014 Chinese Laser 11 119 (in Chinese) [王小林,陶汝茂,张汉伟,周朴,许晓军 2014 中国激光 11 119]

    [26]

    Brown D C, Hoffman H J 2001 IEEE J. Quantum Elect. 37 207

    [27]

    Smith A V, Smith J 2013 Opt. Express 21 2606

    [28]

    Kirchhof J, Unger S, Schwuchow A, Jetschke S, Knappe B 2005 Integrated Optoelectronic Devices San Jose, California, United States, January 22, 2005 p261

    [29]

    www.nufern.com/[2016-2-3]

    [30]

    Jeong Y, Nilsson J, Sahu J K, Payne D N, Horley R, Hickey L M B, Turner P W 2007 IEEE J. Quantum Elect. 13 546

    [31]

    Brar K, Savage-Leuchs M, Henrie J, Courtney S, Dilley C, Afzal R, Honea E 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, San Francisco, California, United States, February 01, 2014 p89611R

    [32]

    Tao R M, Wang X L, Xiao H, Zhou P, Liu Z J 2014 Acta Opt. Sin. 34 134 (in Chinese) [陶汝茂,王小林,肖虎,周朴,刘泽金 2014 光学学报 34 134]

  • [1] 张志伦, 张芳芳, 林贤峰, 王世杰, 曹驰, 邢颍滨, 廖雷, 李进延. 国产部分掺杂光纤实现3 kW全光纤激光振荡输出. 物理学报, 2020, 69(23): 234205. doi: 10.7498/aps.69.20200620
    [2] 夏情感, 肖文波, 李军华, 金鑫, 叶国敏, 吴华明, 马国红. 光纤激光器中包层功率剥离器散热性能的优化. 物理学报, 2020, 69(1): 014204. doi: 10.7498/aps.69.20191093
    [3] 陈恺, 祝连庆, 牛海莎, 孟阔, 董明利. 基于1556 nm光纤激光器频率分裂效应的应力测量. 物理学报, 2019, 68(10): 104201. doi: 10.7498/aps.68.20182171
    [4] 饶云江. 长距离分布式光纤传感技术研究进展. 物理学报, 2017, 66(7): 074207. doi: 10.7498/aps.66.074207
    [5] 陈桂波, 张佳佳, 王超群, 毕娟. 一种基于激光辐照热效应的薄膜参数反演方法. 物理学报, 2016, 65(12): 124401. doi: 10.7498/aps.65.124401
    [6] 张雅男, 王俊锋. 利用发光层梯度掺杂改善顶发射白光有机发光二极管光谱的稳定性. 物理学报, 2015, 64(9): 097801. doi: 10.7498/aps.64.097801
    [7] 郝辉, 夏巍, 王鸣, 郭冬梅, 倪小琦. 光纤激光器自混合干涉效应研究. 物理学报, 2014, 63(23): 234202. doi: 10.7498/aps.63.234202
    [8] 胡淼, 张慧, 张飞, 刘晨曦, 徐国蕊, 邓晶, 黄前锋. 用于光生毫米波的双频微片激光器热致频差特性研究. 物理学报, 2013, 62(20): 204205. doi: 10.7498/aps.62.204205
    [9] 周英, 戴玉, 姚淑娜, 刘军, 陈家斌, 陈淑芬, 辛建国. 激光二极管抽运Nd:YVO4晶体的三维热效应分析. 物理学报, 2013, 62(2): 024210. doi: 10.7498/aps.62.024210
    [10] 王晓晖, 常本康, 钱芸生, 高频, 张益军, 郭向阳, 杜晓晴. 梯度掺杂与均匀掺杂GaN光电阴极的对比研究. 物理学报, 2011, 60(4): 047901. doi: 10.7498/aps.60.047901
    [11] 严雄伟, 於海武, 郑建刚, 李明中, 蒋新颖, 段文涛, 曹丁象, 王明哲, 单小童, 张永亮. 梯度掺杂Yb ∶YAG重频激光器热管理研究. 物理学报, 2011, 60(4): 047801. doi: 10.7498/aps.60.047801
    [12] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析. 物理学报, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [13] 王增, 董刚, 杨银堂, 李建伟. 考虑温度分布效应的非对称RLC树时钟偏差研究. 物理学报, 2010, 59(8): 5646-5651. doi: 10.7498/aps.59.5646
    [14] 周海亮, 池雅庆, 张民选, 方粮. 基于梯度掺杂策略的碳纳米管场效应管性能优化. 物理学报, 2010, 59(11): 8104-8112. doi: 10.7498/aps.59.8104
    [15] 宋小鹿, 过振, 李兵斌, 王石语, 蔡德芳, 文建国. 脉冲激光二极管侧面抽运Nd∶YAG激光器晶体时变热效应. 物理学报, 2009, 58(3): 1700-1708. doi: 10.7498/aps.58.1700
    [16] 黄生荣, 陈 朝. 纳秒级脉冲激光诱导Zn掺杂过程中GaN/Al2O3材料的温度分布及热形变解析分析. 物理学报, 2007, 56(8): 4596-4601. doi: 10.7498/aps.56.4596
    [17] 吴 坚. AlInGaAs垂直谐振腔顶面发射半导体激光器横向温度效应的解析热模型及其表征. 物理学报, 2006, 55(11): 5848-5854. doi: 10.7498/aps.55.5848
    [18] 季小玲, 陶向阳, 吕百达. 光束控制系统热效应与球差对激光光束质量的影响. 物理学报, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
    [19] 田洪涛, 陈 朝. 连续激光诱导Zn/InP掺杂过程中温度分布的解析计算. 物理学报, 2003, 52(2): 367-371. doi: 10.7498/aps.52.367
    [20] 郑瑞伦, 陈洪, 刘俊. 矩形激光脉冲辐照下金属板材料温度分布研究. 物理学报, 2002, 51(3): 554-558. doi: 10.7498/aps.51.554
计量
  • 文章访问数:  4991
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-26
  • 修回日期:  2016-02-14
  • 刊出日期:  2016-05-05

/

返回文章
返回