搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种测量纤锌矿n-GaN位错密度的新方法

何菊生 张萌 潘华清 齐维靖 李平

引用本文:
Citation:

一种测量纤锌矿n-GaN位错密度的新方法

何菊生, 张萌, 潘华清, 齐维靖, 李平

A new method to determine the dislocation density in wurtzite n-GaN

He Ju-Sheng, Zhang Meng, Pan Hua-Qing, Qi Wei-Jing, Li Ping
PDF
导出引用
  • 采用点缺陷线性分布模型,利用能量弛豫方法得到了基于van der Pauw变温霍尔效应测量来确定纤锌矿n-GaN位错密度的新方法. 用高分辨率X射线衍射仪测试了两个分别用MOCVD方法和用HVPE方法生长的n-GaN样品,用Srikant方法拟合得到了位错密度. 结果表明两种方法高度一致. 进一步的研究表明,新方法和化学腐蚀方法的测试结果基本一致,相关拟合参数与采用Rode 迭代法精确求解Boltzmann输运方程的理论结果也基本一致. 研究还表明,新方法能有效消除施主杂质带和界面简并层对测试结果的影响,测试剔除界面层影响后的整个外延层的刃、螺位错密度,而不是穿透位错密度. 该方法适合霍尔迁移率曲线峰位在200 K左右及以下并且峰位明确的各种生长工艺、各种厚度、各种质量层次的薄膜和体材料,具有对迁移率曲线高度拟合,材料参数精确,计算简便、收敛速度快等优点.
    We develop a new method to determine the edge and screw dislocation density in wurtzite n-GaN film. The method is to fit the van der Pauw variable temperature Hall-effect measurements with a analytic expression of low-field electron mobility in n-GaN. Our calculations take the comprehensive effect between the dislocation line and the shallow-donor defects as the main cause to depress the carrier mobility. Because of the crystal distortion near the dislocation line, the energy is so high that shallow-donor defects in the GaN crystal can be captured near the dislocation line. In other words, the shallow-donor defects distribute in lines along the dislocation line, but the shallow-donor defects along the screw and edge dislocation line have different energy levels. The shallow-donor defects take energy from lattice and the carrier, which is in relaxation process, then deliver the energy through ionizing. So, it is found that the following assumptions need to be made in order to obtain the model function for the mobility over a wide temperature range: i) there are 6 shallow-donor defect lines around one dislocation line; ii) two donor energy levels belonging to the screw and edge dislocation respectively must be taken into account; iii) the exchange energy between the carrier and the shallow-donor defect is ħωLO, the energy value of polar optical phonon. Under these assumptions, experiments indicate that our calculation function can fit the experimental curve best. The values of dislocation density from our model and others determined by x-ray diffraction or by chemical etching method are in good agreement, and the values of donor energy levels from our model and Rode iterative method to solve the Boltzmann equation are also in good accordance with each other. This method is applicable for the wurtzite n-GaN films grown by various preparation technologies under any condition, which is for the sample with the peak-mobility temperature about or under 200 K, not for the sample with the peak-mobility temperature about or above 300 K, which room-temperature mobility usually is about or less than 100 cm2/(V·s).
      通信作者: 何菊生, Hejusheng_2004@sohu.com
    • 基金项目: 江西省自然科学基金(批准号:20151BAB207066)和南昌大学科学技术学院自然科学基金(批准号:2012-ZR-06)资助的课题.
      Corresponding author: He Ju-Sheng, Hejusheng_2004@sohu.com
    • Funds: Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB207066) and the Natural Science Foundation of College of Science and Technology of Nanchang University, China (Grant No. 2012-ZR-06).
    [1]

    Kozodoy P, Ibbetson J P, Marchand H, Fini P T, Keller S, Speck J S, DenBaars S P, Mishra U K 1998 Appl. Phys. Lett. 73 975

    [2]

    Stephen W K, Peter G B, Man H W, Erin C H K, Umesh K M, James S S 2012 Appl. Phys. Lett. 101 262102

    [3]

    Heinke H, Kirchner V, Einfeldt S, Hommel D 2000 Appl. Phys. Lett. 77 2145

    [4]

    Metzger T, Hopler R, Born E, Ambacher O, Stutzmann M, Stommer R, Schuster M, Gobel H, Christiansen S, Albrecht M, Strunk H P 1998 Philos. Mag. A 77 1013

    [5]

    Ivantsov V, Volkova A 2012 Condens. Matter Phys. 18 4023

    [6]

    Srikant V, Speck J S, Clarke D R 1997 J. Appl. Phys. 82 4286

    [7]

    Zhang Y, Xie Z L, Wang J, Tao T, Zhang R, Liu B, Chen P, Han P, Shi Y, Zheng Y D 2013 Acta Phys. Sin. 62 056101 (in Chinese) [张韵, 谢自力, 王健, 陶涛, 张荣, 刘斌, 陈鹏, 韩平, 施毅, 郑有炓 2013 物理学报 62 056101]

    [8]

    Ibrahim M A M, Korotkov R Y 2005 J. Appl. Phys. 97 093715

    [9]

    You J H, Lu J Q, Johnson H T 2006 J. Appl. Phys. 99 033706

    [10]

    Weimann N G, Eastman L F, Doppalapudi D, Hock M N, Moustakas T D 1998 J. Appl. Phys. 83 3656

    [11]

    Look D C, Sizelove J R 2001 Appl. Phys. Lett. 79 1133

    [12]

    Look D C, Sizelove J R, Keller S, Wu Y F, Mishra U K, DenBaas S P 1997 Solid State Commun. 102 297

    [13]

    Mavroidis C, Harris J J, Kappers M J, Humphreys C J, Bougrioua Z 2003 J. Appl. Phys. 93 9095

    [14]

    Götz W, Romano L T, Krusor B S, Johnson N M, Molnar R 1996 J. Appl. Phys. Lett. 69 242

    [15]

    Chen Z, Yuan H R, Lu D C, Sun X H, Wan S K, Liu X L, Han P D, Wang X H, Zhu Q S, Wang Z G 2002 Solid-State Electron. 46 2069

  • [1]

    Kozodoy P, Ibbetson J P, Marchand H, Fini P T, Keller S, Speck J S, DenBaars S P, Mishra U K 1998 Appl. Phys. Lett. 73 975

    [2]

    Stephen W K, Peter G B, Man H W, Erin C H K, Umesh K M, James S S 2012 Appl. Phys. Lett. 101 262102

    [3]

    Heinke H, Kirchner V, Einfeldt S, Hommel D 2000 Appl. Phys. Lett. 77 2145

    [4]

    Metzger T, Hopler R, Born E, Ambacher O, Stutzmann M, Stommer R, Schuster M, Gobel H, Christiansen S, Albrecht M, Strunk H P 1998 Philos. Mag. A 77 1013

    [5]

    Ivantsov V, Volkova A 2012 Condens. Matter Phys. 18 4023

    [6]

    Srikant V, Speck J S, Clarke D R 1997 J. Appl. Phys. 82 4286

    [7]

    Zhang Y, Xie Z L, Wang J, Tao T, Zhang R, Liu B, Chen P, Han P, Shi Y, Zheng Y D 2013 Acta Phys. Sin. 62 056101 (in Chinese) [张韵, 谢自力, 王健, 陶涛, 张荣, 刘斌, 陈鹏, 韩平, 施毅, 郑有炓 2013 物理学报 62 056101]

    [8]

    Ibrahim M A M, Korotkov R Y 2005 J. Appl. Phys. 97 093715

    [9]

    You J H, Lu J Q, Johnson H T 2006 J. Appl. Phys. 99 033706

    [10]

    Weimann N G, Eastman L F, Doppalapudi D, Hock M N, Moustakas T D 1998 J. Appl. Phys. 83 3656

    [11]

    Look D C, Sizelove J R 2001 Appl. Phys. Lett. 79 1133

    [12]

    Look D C, Sizelove J R, Keller S, Wu Y F, Mishra U K, DenBaas S P 1997 Solid State Commun. 102 297

    [13]

    Mavroidis C, Harris J J, Kappers M J, Humphreys C J, Bougrioua Z 2003 J. Appl. Phys. 93 9095

    [14]

    Götz W, Romano L T, Krusor B S, Johnson N M, Molnar R 1996 J. Appl. Phys. Lett. 69 242

    [15]

    Chen Z, Yuan H R, Lu D C, Sun X H, Wan S K, Liu X L, Han P D, Wang X H, Zhu Q S, Wang Z G 2002 Solid-State Electron. 46 2069

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响. 物理学报, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响. 物理学报, 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [3] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究. 物理学报, 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [4] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用. 物理学报, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [5] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究. 物理学报, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [6] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红. 基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理. 物理学报, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [7] 张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红. 基于GaN同质衬底的高迁移率AlGaN/GaN HEMT材料. 物理学报, 2018, 67(7): 076801. doi: 10.7498/aps.67.20172581
    [8] 何菊生, 张萌, 邹继军, 潘华清, 齐维靖, 李平. 基于三轴X射线衍射方法的n-GaN位错密度的测试条件分析. 物理学报, 2017, 66(21): 216102. doi: 10.7498/aps.66.216102
    [9] 何菊生, 张萌, 潘华清, 邹继军, 齐维靖, 李平. 基于变温霍尔效应方法的一类n-GaN位错密度的测量. 物理学报, 2017, 66(6): 067201. doi: 10.7498/aps.66.067201
    [10] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究. 物理学报, 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [11] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [12] 江洋, 罗毅, 汪莱, 李洪涛, 席光义, 赵维, 韩彦军. 柱状与孔状图形衬底对MOVPE生长GaN体材料及LED器件的影响. 物理学报, 2009, 58(5): 3468-3473. doi: 10.7498/aps.58.3468
    [13] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [14] 刘红, 王西涛, 陈冷. 含Nb微合金钢应变诱导析出的模拟. 物理学报, 2009, 58(13): 151-S155. doi: 10.7498/aps.58.151
    [15] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [16] 刘 杰, 郝 跃, 冯 倩, 王 冲, 张进城, 郭亮良. 基于I-V-T和C-V-T的GaN上Ni/Au肖特基接触特性研究. 物理学报, 2007, 56(6): 3483-3487. doi: 10.7498/aps.56.3483
    [17] 李 彤, 王怀兵, 刘建平, 牛南辉, 张念国, 邢艳辉, 韩 军, 刘 莹, 高 国, 沈光地. Delta掺杂制备p-GaN薄膜及其电性能研究. 物理学报, 2007, 56(2): 1036-1040. doi: 10.7498/aps.56.1036
    [18] 郭宝增, 宫 娜, 师建英, 王志宇. 纤锌矿相GaN空穴输运特性的Monte Carlo模拟研究. 物理学报, 2006, 55(5): 2470-2475. doi: 10.7498/aps.55.2470
    [19] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [20] 李拥华, 徐彭寿, 潘海滨, 徐法强, 谢长坤. GaN(1010)表面结构的第一性原理计算. 物理学报, 2005, 54(1): 317-322. doi: 10.7498/aps.54.317
计量
  • 文章访问数:  4840
  • PDF下载量:  225
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-29
  • 修回日期:  2016-06-07
  • 刊出日期:  2016-08-05

/

返回文章
返回