搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空位缺陷及Mg替位对纤锌矿(Ga,Mn)N电子结构和磁光性能的影响

徐大庆 李培咸 娄永乐 岳改丽 张超 张岩 刘宁庄 杨波

引用本文:
Citation:

空位缺陷及Mg替位对纤锌矿(Ga,Mn)N电子结构和磁光性能的影响

徐大庆, 李培咸, 娄永乐, 岳改丽, 张超, 张岩, 刘宁庄, 杨波

Effects of vacancy defect and Mg substitution on electronic structure, magnetic and optical properties of wurtzite structure (Ga, Mn)N

Xu Da-Qing, Li Pei-Xian, Lou Yong-Le, Yue Gai-Li, Zhang Chao, Zhang Yan, Liu Ning-Zhuang, Yang Bo
PDF
导出引用
  • 采用自旋密度泛函理论框架下的广义梯度近似(GGA+U)平面波超软赝势方法,构建了未掺杂纤锌矿GaN超胞、三种不同有序占位Mn双掺GaN,(Mn,Mg)共掺杂GaN以及存在空位缺陷的Mn掺杂GaN超胞模型,分别对所有模型的能带结构、电子态密度、能量以及光学性质进行了计算.计算结果表明:与纯的GaN相比,Mn掺杂GaN体系的体积略有增大,掺杂体系居里温度能够达到室温以上;随着双掺杂Mn-Mn间距的增大,体系总能量和形成能升高、稳定性下降、掺杂越难;(Mn,Mg)共掺杂并不能有效增大掺杂体系磁矩,也不能达到提高掺杂体系居里温度的作用;Ga空位缺陷和N空位缺陷的存在不利于Mn掺杂GaN形成稳定的铁磁有序.此外,Mn离子的掺入在费米能级附近引入自旋极化杂质带,正是由于费米能级附近自旋极化杂质带中不同电子态间的跃迁,介电函数虚部在0.6868 eV附近、光吸收谱在1.25 eV附近分别出现了一个较强的新峰.
    Developing GaN based dilute magnetic semiconductors by making use of the preparation techniques for GaN materials,and combining the electrical and optical properties of existing GaN electronic devices with magnetic property will enable various novel spintronic devices to be made.The key enabler for the wide application of dilute magnetic semiconductors is room temperature ferromagnetism.Many research groups have reported numerous samples of GaN based dilute magnetic semiconductors with distinctively different magnetic properties.It may be argued that no consensus exists on the origin and control of ferromagnetism in these materials.There exists little work focusing on different doping modes for double-Mn doped GaN,GaN co-doped with Mn and non magnetic elements,and Mn doped GaN with vacancy defects,although such a doping method can significantly modify the electronic structures,magnetic and optical properties of these materials.Therefore,it is meaningful to study the effects of these different doping techniques on the electronic structure,magnetic and optical properties of Mn doped GaN so as to understand the magnetic exchange interaction in Mn doped GaN and improve its physical properties.In the calculation in this paper,the generalized gradient approximation (GGA+U) plane wave pseudopotential method under the framework of spin density functional theory is used.Models for the geometric structures of undoped wurtzite GaN supercell,three different doping modes of double Mn doped GaN, (Mn,Mg) co-doped GaN,and Mn-doped GaN with vacancy defects are constructed.The band structures,densities of states,energies and optical properties of these models are analyzed.The results show that the Curie temperature of the Mn doped GaN system can reach above room temperature.Compared with that of pure GaN,the volume of the Mn doped GaN system increases slightly.It is also discovered that the total energy and formation energy of the doped system increase with the Mn-Mn distance increasing,thereby lowering the stability of the system and making doping more difficult.Analysis reveals that co-doping the GaN with (Mn,Mg) can neither effectively increase the total magnetic moment of the doped system,nor improve the Curie temperature effect.The defects induced by Ga vacancies and N vacancies in the doped system hinder the stable ferromagnetic coupling from forming.In addition,the incorporation of Mn ions forms the spin polarized impurity band near the Fermi level.Due to the transitions between different electronic states in the spin polarized impurity band,the peak around 0.6868 eV in the imaginary part of the dielectric function and the peak near 1.25 eV in the optical absorption spectrum appear,respectively.This work offers a new insight into the understanding of the magnetic mechanisms and optical properties of Mn doped GaN,and will be conducible to improving its physical properties.
      通信作者: 徐大庆, xustxdq@163.com
    • 基金项目: 陕西省教育厅专项科研计划项目(批准号:11JK0912)、西安科技大学科研培育基金项目(批准号:2010011)、西安科技大学博士启动金项目(批准号:2010QDJ029)、国防预研究基金(批准号:9140A08040410DZ106)和中央高校基本科研业务费专项资金(批准号:JY10000925005)资助的课题.
      Corresponding author: Xu Da-Qing, xustxdq@163.com
    • Funds: Project supported by the Scientific Research Program Funded of Shaanxi Provincial Education Department, China (Grant No. 11JK0912), Scientific Research Foundation of Xi'an University of Science and Technology, China (Grant No. 2010011), Doctoral Research Startup Fund of Xi'an University of Science and Technology, China (Grant No. 2010QDJ029), National Defense Advance Research Foundation, China (Grant No. 9140A08040410DZ106), and the Basic Research Program of Ministry of Education, China (Grant No. JY10000925005).
    [1]

    Lin Y T, Wadekar P V, Kao H S, Chen T H, Huang H C, Ho N J, Chen Q Y, Tu L W 2014 Appl. Phys. Lett. 104 062414

    [2]

    Kunert G, Dobkowska S, Li T, Reuther H, Kruse C, Figge S, Jakiela R, Bonanni A, Grenzer J, Stefanowicz W, Borany J von, Sawicki M, Dietl T, Hommel D 2012 Appl. Phys. Lett. 101 022413

    [3]

    Bihler C, Gerstmann U, Hoeb M, Graf T, Gjukic M, Schmidt W G, Stutzmann M, Brandt M S 2009 Phys. Rev. B 80 205205

    [4]

    Sonoda S, Shimizu S, Sasaki T, Yamamoto Y, Hori H 2002 J. Cryst. Growth 237–239 1358

    [5]

    Sasaki T, Sonoda S, Yamamoto Y, Suga K I, Shimizu S, Kindo K, Hidenobu H 2002 J. Appl. Phys. 91 7911

    [6]

    Cui X G, Tao Z K, Zhang R, Li X, Xiu X Q, Xie Z L, Gu S L, Han P, Shi Y, Zheng Y D 2008 Appl. Phys. Lett. 92 152116

    [7]

    Jeon H C, Kang T W, Kim T W, Kang J, Chang K J 2005 Appl. Phys. Lett. 87 092501

    [8]

    Shi Y, Zhang Y X, Jiang C Z, Fu D J, Fan X J 2007 Physica B 388 82

    [9]

    Ploog K H, Dhar S, Trampert A 2003 J. Vac. Sci. Teehnol. B 21 1756

    [10]

    Zhang Z, Schwingenschlogl U, Roqan I S 2014 J. Appl. Phys. 116 183905

    [11]

    Wang Q J, Wang J B, Zhong X L, Tan Q H, Hu Z, Zhou Y C 2012 Appl. Phys. Lett. 100 132407

    [12]

    Roul B, Rajpalke M K, Bhat T N, Kumar M, Kalghatgi A T, Krupanidhi S B, Kumar N, Sundaresan A 2011 Appl. Phys. Lett. 99 162512

    [13]

    Peng H, Xiang H J, Wei S H, Li S S, Xia J B, Li J 2009 Phys. Rev. Lett. 102 017201

    [14]

    Xu B, Pan B C 2009 J. Appl. Phys. 105 103710

    [15]

    Wang Q, Sun Q, Chen G, Kawazoe Y, Jena P 2008 Phys. Rev. B 77 205411

    [16]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Vanderbilt T D 1990 Phys. Rev. B 41 7892

    [19]

    Gian W, Skowronski M, Rohrer G S 1996 MRS Proceedings 423 475

    [20]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [21]

    Akai H 1998 Phys. Rev. Lett. 81 3002

    [22]

    Dalpian G M, Wei S H, Gong, X G, Silva A J R D, Fazzio A 2006 Solid State Commun. 138 353

    [23]

    Anderson P W 1950 J. Appl. Phys. 79 350

    [24]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [25]

    Gopal P, Spaldin N A 2006 Phys. Rev. B 74 094418

    [26]

    Hou Q Y, Xu Z C, Wu Y, Zhao E J 2015 Acta Phys. Sin. 64 167201 (in Chinese) [侯清玉, 许镇潮, 乌云, 赵二俊2015物理学报64 167201]

    [27]

    Shen X C 1992 The Spectrum and Optical Property of Semiconductor ( Beijing: Science Press) p77(in Chinese) [沈学础2002半导体光谱和光学性质(北京: 科学出版社)第77页]

    [28]

    Shen J, Wei B, Zhou J, Shen S Z, Xue G J, Liu H X, Chen W 2015 Acta Phys. Sin. 64 217801 (in Chinese) [沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文2015物理学报64 217801]

    [29]

    Sun J, Wang H T, He J L, Tian Y J 2005 Phys. Rev. B 71 125132

  • [1]

    Lin Y T, Wadekar P V, Kao H S, Chen T H, Huang H C, Ho N J, Chen Q Y, Tu L W 2014 Appl. Phys. Lett. 104 062414

    [2]

    Kunert G, Dobkowska S, Li T, Reuther H, Kruse C, Figge S, Jakiela R, Bonanni A, Grenzer J, Stefanowicz W, Borany J von, Sawicki M, Dietl T, Hommel D 2012 Appl. Phys. Lett. 101 022413

    [3]

    Bihler C, Gerstmann U, Hoeb M, Graf T, Gjukic M, Schmidt W G, Stutzmann M, Brandt M S 2009 Phys. Rev. B 80 205205

    [4]

    Sonoda S, Shimizu S, Sasaki T, Yamamoto Y, Hori H 2002 J. Cryst. Growth 237–239 1358

    [5]

    Sasaki T, Sonoda S, Yamamoto Y, Suga K I, Shimizu S, Kindo K, Hidenobu H 2002 J. Appl. Phys. 91 7911

    [6]

    Cui X G, Tao Z K, Zhang R, Li X, Xiu X Q, Xie Z L, Gu S L, Han P, Shi Y, Zheng Y D 2008 Appl. Phys. Lett. 92 152116

    [7]

    Jeon H C, Kang T W, Kim T W, Kang J, Chang K J 2005 Appl. Phys. Lett. 87 092501

    [8]

    Shi Y, Zhang Y X, Jiang C Z, Fu D J, Fan X J 2007 Physica B 388 82

    [9]

    Ploog K H, Dhar S, Trampert A 2003 J. Vac. Sci. Teehnol. B 21 1756

    [10]

    Zhang Z, Schwingenschlogl U, Roqan I S 2014 J. Appl. Phys. 116 183905

    [11]

    Wang Q J, Wang J B, Zhong X L, Tan Q H, Hu Z, Zhou Y C 2012 Appl. Phys. Lett. 100 132407

    [12]

    Roul B, Rajpalke M K, Bhat T N, Kumar M, Kalghatgi A T, Krupanidhi S B, Kumar N, Sundaresan A 2011 Appl. Phys. Lett. 99 162512

    [13]

    Peng H, Xiang H J, Wei S H, Li S S, Xia J B, Li J 2009 Phys. Rev. Lett. 102 017201

    [14]

    Xu B, Pan B C 2009 J. Appl. Phys. 105 103710

    [15]

    Wang Q, Sun Q, Chen G, Kawazoe Y, Jena P 2008 Phys. Rev. B 77 205411

    [16]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Vanderbilt T D 1990 Phys. Rev. B 41 7892

    [19]

    Gian W, Skowronski M, Rohrer G S 1996 MRS Proceedings 423 475

    [20]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [21]

    Akai H 1998 Phys. Rev. Lett. 81 3002

    [22]

    Dalpian G M, Wei S H, Gong, X G, Silva A J R D, Fazzio A 2006 Solid State Commun. 138 353

    [23]

    Anderson P W 1950 J. Appl. Phys. 79 350

    [24]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [25]

    Gopal P, Spaldin N A 2006 Phys. Rev. B 74 094418

    [26]

    Hou Q Y, Xu Z C, Wu Y, Zhao E J 2015 Acta Phys. Sin. 64 167201 (in Chinese) [侯清玉, 许镇潮, 乌云, 赵二俊2015物理学报64 167201]

    [27]

    Shen X C 1992 The Spectrum and Optical Property of Semiconductor ( Beijing: Science Press) p77(in Chinese) [沈学础2002半导体光谱和光学性质(北京: 科学出版社)第77页]

    [28]

    Shen J, Wei B, Zhou J, Shen S Z, Xue G J, Liu H X, Chen W 2015 Acta Phys. Sin. 64 217801 (in Chinese) [沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文2015物理学报64 217801]

    [29]

    Sun J, Wang H T, He J L, Tian Y J 2005 Phys. Rev. B 71 125132

  • [1] 王权杰, 邓宇戈, 王仁宗, 刘向军. 界面工程调控GaN基异质结界面热传导性能研究. 物理学报, 2023, 72(22): 226301. doi: 10.7498/aps.72.20230791
    [2] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [3] 乔建良, 徐源, 高有堂, 牛军, 常本康. 反射式变掺杂负电子亲和势GaN光电阴极量子效率研究. 物理学报, 2017, 66(6): 067903. doi: 10.7498/aps.66.067903
    [4] 侯清玉, 贾晓芳, 许镇潮, 赵春旺. Ni掺杂对ZnO磁光性能的影响. 物理学报, 2017, 66(11): 117401. doi: 10.7498/aps.66.117401
    [5] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理. 物理学报, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [6] 侯振桃, 李彦如, 刘何燕, 代学芳, 刘国栋, 刘彩池, 李英. Ga空位对GaN:Gd体系磁性影响的第一性原理研究. 物理学报, 2016, 65(12): 127102. doi: 10.7498/aps.65.127102
    [7] 沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文. Ba(Mg1/3Nb2/3)O3电子结构第一性原理计算及光学性能研究. 物理学报, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [8] 黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益. 硅基板和铜基板垂直结构GaN基LED变温变电流发光性能的研究. 物理学报, 2014, 63(21): 217806. doi: 10.7498/aps.63.217806
    [9] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [10] 李倩倩, 郝秋艳, 李英, 刘国栋. 稀土元素(Ce, Pr)掺杂GaN的电子结构和光学性质的理论研究. 物理学报, 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [11] 管东波, 毛健. Magnli相亚氧化钛Ti8O15的电子结构和光学性能的第一性原理研究. 物理学报, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [12] 乔建良, 常本康, 钱芸生, 高频, 王晓晖, 徐源. 负电子亲和势GaN真空面电子源研究进展. 物理学报, 2011, 60(10): 107901. doi: 10.7498/aps.60.107901
    [13] 乔建良, 常本康, 钱芸生, 王晓晖, 李飙, 徐源. GaN真空面电子源光电发射机理研究. 物理学报, 2011, 60(12): 127901. doi: 10.7498/aps.60.127901
    [14] 乔建良, 田思, 常本康, 杜晓晴, 高频. 负电子亲和势GaN光电阴极激活机理研究. 物理学报, 2009, 58(8): 5847-5851. doi: 10.7498/aps.58.5847
    [15] 周 梅, 常清英, 赵德刚. 一种减小GaN基肖特基结构紫外探测器暗电流的方法. 物理学报, 2008, 57(4): 2548-2553. doi: 10.7498/aps.57.2548
    [16] 周 梅, 赵德刚. p-GaN层厚度对GaN基p-i-n结构紫外探测器性能的影响. 物理学报, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [17] 张剑铭, 邹德恕, 徐 晨, 顾晓玲, 沈光地. 电极结构优化对大功率GaN基发光二极管性能的影响. 物理学报, 2007, 56(10): 6003-6007. doi: 10.7498/aps.56.6003
    [18] 周 梅, 左淑华, 赵德刚. 一种新型GaN基肖特基结构紫外探测器. 物理学报, 2007, 56(9): 5513-5517. doi: 10.7498/aps.56.5513
    [19] 万 威, 唐春艳, 王玉梅, 李方华. GaN晶体中堆垛层错的高分辨电子显微像研究. 物理学报, 2005, 54(9): 4273-4278. doi: 10.7498/aps.54.4273
    [20] 沈耀文, 康俊勇. GaN中与C和O有关的杂质能级第一性原理计算. 物理学报, 2002, 51(3): 645-648. doi: 10.7498/aps.51.645
计量
  • 文章访问数:  4840
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-29
  • 修回日期:  2016-07-18
  • 刊出日期:  2016-10-05

/

返回文章
返回