搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1 k量子霍尔阵列电阻标准器件研制

钟青 王雪深 李劲劲 鲁云峰 李正坤 王文新 孙庆灵

引用本文:
Citation:

1 k量子霍尔阵列电阻标准器件研制

钟青, 王雪深, 李劲劲, 鲁云峰, 李正坤, 王文新, 孙庆灵

A 1 k standardresistor device based on quantum Hall array

Zhong Qing, Wang Xue-Shen, Li Jin-Jin, Lu Yun-Feng, Li Zheng-Kun, Wang Wen-Xin, Sun Qing-Ling
PDF
导出引用
  • 基于量子霍尔效应的整数值量子电阻标准计量器件,能够有效缩短电阻的量值传递链,减少传递过程引入的不确定度,实现电阻传递的量子化和扁平化.本文系统报告了基于GaAs/AlxGa1-xAs异质结的1 k量子霍尔阵列电阻标准器件的设计、制作和测试.该器件在1.5 K下的测量结果与设计值的相对偏差为-1.9610-7,测试数据的离散性为2.0710-7.表明我们实现了1 k量子霍尔电阻标准阵列器件.
    Quantum metrological standards based on the fundamental physical constants are the trend of modern metrology because of their attributes such as high accuracy, high stability, and good reproducibility. The quantum Hall effect (QHE), which refers to the electronic charge e and the Planck constant h, is used to define the quantum resistance standard. The quantum Hall resistance (RH) of h/2e2 at the filling factori=2 is used as the standard. It is obvious that the RH is non-integral. However the resistors that need to be calibrated each have a decimal value, such as 1 k, 10 k, 100 k, etc. The calibration chain from the non-integral RH to the real resistor is long. The quantum Hall array resistance standards (QHARSs) are invented to solve this problem. The QHARS which are based on the decimal resistance values can shorten the calibration chain, improve the resistance transfer accuracy, and finally realize the quantization of the whole resistance calibration chain. The QHARS can also replace the traditional physical transfer standard resistor and realize the quantization of the transfer standard resistor. The decimal QHARS devices can be realized by connecting single QHE devices in series or parallel with the multiple link technology. In this paper we report the design, fabrication and characterization of a 1 k QHARS device based on the GaAs/AlxGa1-xAs heterostructures. In our design, the 1 k array device consists of only 29 Hall bars. The nominal value of the device is 999.9999658 with a relative deviation of -3.4210-8 from 1 k. The ratio between the maximum and minimum current flowing through the Hall bars is as small as 14.5. The 1 k QHARS devices are measured in the national resistance standard system at a temperature of 1.5 K. The measurement is taken at the central magnetic field of the 2nd quantum Hall plateau. We compare our 1 k QHARS resistor with a 1 k transfer standard resistor using the direct current comparator. The 1 k transfer standard resistor has already been calibrated in advance with our single QHR standard by cryogenic current comparator. Therefore the resistance of our 1 k QHARS resistor can be obtained. The relative deviation between the measured resistance value and the designed value is -1.9610-7with a standard uncertainty of 2.0710-7. The results show that we have realized the 1 k quantum Hall resistance standard device which can be used for the resistance calibration.
      通信作者: 李劲劲, jinjinli@nim.ac.cn
    • 基金项目: 国家科技支撑计划(批准号:2011BAK15B08)资助的课题.
      Corresponding author: Li Jin-Jin, jinjinli@nim.ac.cn
    • Funds: Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2011BAK15B08).
    [1]

    von Klitzing K 1986Rev. Mod. Phys. 58 519

    [2]

    Delahaye F, Jeckelmann B 2003Metrologia 40 217

    [3]

    Piquemal F, Geneves G, Delahaye F, Andre J, Patillon J, Frijlink P 1993IEEE Trans. Instrum. Meas. 42 264

    [4]

    Zhang Z H, He Q, Li Z K, Liu Y 2005Acta Metrol. Sin. 4 31

    [5]

    Delahaye F 1993J. Appl. Phys. 73 7914

    [6]

    Ortolano M, Abrate M, Callegaro L 2015Metrologia 52 31

    [7]

    Poirier W, Bounouh A, Piquemal F, André J P 2004Metrologia 41 285

    [8]

    Kaneko N, Urano C, Itatani T, Kiryu S 2006CPEM 2006 Torino, Italy, August 24-29, 2006 p512

    [9]

    Oe T, Matsuhiro K, Itatani T, Gorwadkar S, Kiryu S, Kaneko N 2013IEEE Trans. Instrum. Meas. 62 1755

    [10]

    Zhong Y, Zhong Q, He Q, Lu Y F, Zhao J T, Li Z K, Zhang Z H, Chi Z T 2010CPEM 2010 Daejeon, Korea, June 13-18, 2010 p351

    [11]

    Zhong Q, Li J J, Zhao J T, Zhao M K, Wang X S, Lu Y F, Zhong Y 2014CPEM 2014 Rio de Janeiro, Brazil, August 24-29, 2014 p544

    [12]

    Zhong Q, Wang X S, Li J J, Zhou Z Q, Shi Y 2014CPEM 2014 Rio de Janeiro, Brazil, August 24-29, 2014 p542

  • [1]

    von Klitzing K 1986Rev. Mod. Phys. 58 519

    [2]

    Delahaye F, Jeckelmann B 2003Metrologia 40 217

    [3]

    Piquemal F, Geneves G, Delahaye F, Andre J, Patillon J, Frijlink P 1993IEEE Trans. Instrum. Meas. 42 264

    [4]

    Zhang Z H, He Q, Li Z K, Liu Y 2005Acta Metrol. Sin. 4 31

    [5]

    Delahaye F 1993J. Appl. Phys. 73 7914

    [6]

    Ortolano M, Abrate M, Callegaro L 2015Metrologia 52 31

    [7]

    Poirier W, Bounouh A, Piquemal F, André J P 2004Metrologia 41 285

    [8]

    Kaneko N, Urano C, Itatani T, Kiryu S 2006CPEM 2006 Torino, Italy, August 24-29, 2006 p512

    [9]

    Oe T, Matsuhiro K, Itatani T, Gorwadkar S, Kiryu S, Kaneko N 2013IEEE Trans. Instrum. Meas. 62 1755

    [10]

    Zhong Y, Zhong Q, He Q, Lu Y F, Zhao J T, Li Z K, Zhang Z H, Chi Z T 2010CPEM 2010 Daejeon, Korea, June 13-18, 2010 p351

    [11]

    Zhong Q, Li J J, Zhao J T, Zhao M K, Wang X S, Lu Y F, Zhong Y 2014CPEM 2014 Rio de Janeiro, Brazil, August 24-29, 2014 p544

    [12]

    Zhong Q, Wang X S, Li J J, Zhou Z Q, Shi Y 2014CPEM 2014 Rio de Janeiro, Brazil, August 24-29, 2014 p542

计量
  • 文章访问数:  4826
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-02
  • 修回日期:  2016-08-23
  • 刊出日期:  2016-11-05

/

返回文章
返回