搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑底充胶固化过程的InSb面阵探测器结构分析模型

张晓玲 司乐飞 孟庆端 吕衍秋 司俊杰

引用本文:
Citation:

考虑底充胶固化过程的InSb面阵探测器结构分析模型

张晓玲, 司乐飞, 孟庆端, 吕衍秋, 司俊杰

Structural model of InSb IRFPAs including underfill curing process

Zhang Xiao-Ling, Si Le-Fei, Meng Qing-Duan, Lü Yan-Qiu, Si Jun-Jie
PDF
导出引用
  • 液氮冲击中InSb面阵探测器的易碎裂特性制约着探测器的成品率,建立适用于面阵探测器全工艺流程的结构模型是分析、优化探测器结构的有效手段.本文提出了用底充胶体积收缩率来描述底充胶在恒温固化中的体积收缩现象,同时忽略固化中底充胶弹性模量的变化来建立底充胶固化模型,给出了底充胶在恒温固化中生成的热应力/应变上限值.借鉴前期提出的等效建模思路,结合底充胶固化后的自然冷却过程和随后的液氮冲击实验,建立了适用于InSb面阵探测器全工艺流程的结构分析模型.探测器历经底充胶固化、自然冷却至室温后的模拟结果与室温下拍摄的探测器形变分布照片高度符合.随后模拟液氮冲击实验,得到面阵探测器中累积的热应力/应变随温度的演变规律,热应力/应变值极值出现的温度区间与液氮冲击实验结果相符合.这表明所建模型适用于预测不同工艺阶段中面阵探测器的形变分布及演变规律.
    InSb infrared focal plane array(IRFPA) detector, active in 3-5 m range, has been widely used in military fields. Higher fracture probability appearing in InSb infrared focal plane arrays(IRFPAs) subjected to thermal shock test, restricts its final yield. In order to analyze and optimize the structure of InSb IRFPAs, it is necessary to create the three-dimensional structural model of InSb IRFPAs, which is employed to estimate its strain distribution appearing in the different fabricating processes. In this paper, the curing model of underfill is described by its volume contraction percentage combined with the elastic modulus of the completely cured underfill. Thus, both the von Mises stress and the Z-components of strain accumulated in the curing process of underfill are calculated. When InSb IRFPAs is naturally cooled to room temperature from the curing temperature of underfill, the Z-component of strain distribution appearing on the top surface of InSb IRFPAs is obtained with our structural model, which is identical to the deformation distribution on the top surface of InSb IRFPAs measured at room temperature. In the following thermal shock simulation, we find that the maximal von Mises stress appears at 100 K and the maximal Z-component of strain appears at 150 K, these two temperature points are located in the second half of the thermal shock process, these results indicate that the fracture of InSb chip happens more easily in liquid nitrogen shock test. This inference is consistent with the fact appearing in liquid nitrogen shock test. All these findings suggest that the proposed model is suitable to estimate the deformation distribution of InSb IRFPAs and its changing rule in its different fabricating stages.
      通信作者: 孟庆端, qdmengly@163.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号:61505048)和航空科学基金(批准号:20152442001)资助的课题.
      Corresponding author: Meng Qing-Duan, qdmengly@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No. 61505048) and the Aero Science Foundation of China(Grant No. 20152442001).
    [1]

    He L, Yang D J, Ni G Q 2011 Introduction to Advanced Focal Plane Arrays(1st Ed.)(Beijing:National Defence Industry Press) p1(in Chinese)[何力, 杨定江, 倪国强2011先进焦平面技术导论(第1版)(北京:国防工业出版社)第1页]

    [2]

    Qiu W C, Hu W D 2015 Sci. China:Phys. Mech. Astron. 58 027001

    [3]

    Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Waves 35 25(in Chinese)[胡伟达, 梁健, 越方禹, 陈效双, 陆卫2016红外与毫米波学报35 25]

    [4]

    Tidrow M Z, 2005 Proceedings of SPIE Bellingham, WA, March 25-28, 2005 p217

    [5]

    Gong H M, Liu D F 2008 Infrared Laser Eng. 37 18 (in Chinese)[龚海梅, 刘大福2008红外与激光工程37 18]

    [6]

    Meng Q D, Zhang X L, Zhang L W, L Y Q 2012 Acta Phys. Sin. 61 190701 (in Chinese)[孟庆端, 张晓玲, 张立文, 吕衍秋2012物理学报61 190701]

    [7]

    Zhang X L, Meng Q D, Zhang L W, L Y Q 2014 Infrared Phys. Technol. 63 28

    [8]

    Zhang X L, Meng C, Zhang W, L Y Q, Si J J, Meng Q D 2016 Infrared Phys. Technol. 76 631

    [9]

    Sadeghinia M, Jansen K M B, Ernst L J 2012 Microelectron. Reliab. 52 1711

    [10]

    Sadeghinia M, Jansen K M B, Ernst L J 2012 Int. J. Adhes. Adhes. 32 82

    [11]

    Yamaguchi H, Enomoto T, Sato T, 2014 Proceedings of ICEP Toyama, Japan April 23-25, 2014 p507

    [12]

    Yang D G, Ernst L J, Hof C, Kiasat M S, Bisschop J, Janssen J, Kuper F, Liang Z N, Schravendeel R, Zhang G Q 2000 Microelectron. Reliab. 40 1533

    [13]

    Jiang J, Tsao S, O'Sullivan T, Razeghi M, Brown G J 2004 Infrared Phys. Technol. 45 143

    [14]

    He Y, Moreira B E, Overson A, Nakamura S H, Bider C, Briscoe J F 2000 Thermochim. Acta 357-358 1

    [15]

    White G K, Collins J G 1972 J. Low Temp. Phys. 7 43

    [16]

    Cheng X, Liu C, Silberschmidt V V 2012 Comput. Mater. Sci. 52 274

    [17]

    Chang R W, Patrick Mccluskey F 2009 J. Electron. Mater. 38 1855

    [18]

    Meng Q D, Yu Q, Zhang L W, L Y Q 2012 Acta Phys. Sin. 61 226103 (in Chinese)[孟庆端, 余倩, 张立文, 吕衍秋2012物理学报61 226103]

  • [1]

    He L, Yang D J, Ni G Q 2011 Introduction to Advanced Focal Plane Arrays(1st Ed.)(Beijing:National Defence Industry Press) p1(in Chinese)[何力, 杨定江, 倪国强2011先进焦平面技术导论(第1版)(北京:国防工业出版社)第1页]

    [2]

    Qiu W C, Hu W D 2015 Sci. China:Phys. Mech. Astron. 58 027001

    [3]

    Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Waves 35 25(in Chinese)[胡伟达, 梁健, 越方禹, 陈效双, 陆卫2016红外与毫米波学报35 25]

    [4]

    Tidrow M Z, 2005 Proceedings of SPIE Bellingham, WA, March 25-28, 2005 p217

    [5]

    Gong H M, Liu D F 2008 Infrared Laser Eng. 37 18 (in Chinese)[龚海梅, 刘大福2008红外与激光工程37 18]

    [6]

    Meng Q D, Zhang X L, Zhang L W, L Y Q 2012 Acta Phys. Sin. 61 190701 (in Chinese)[孟庆端, 张晓玲, 张立文, 吕衍秋2012物理学报61 190701]

    [7]

    Zhang X L, Meng Q D, Zhang L W, L Y Q 2014 Infrared Phys. Technol. 63 28

    [8]

    Zhang X L, Meng C, Zhang W, L Y Q, Si J J, Meng Q D 2016 Infrared Phys. Technol. 76 631

    [9]

    Sadeghinia M, Jansen K M B, Ernst L J 2012 Microelectron. Reliab. 52 1711

    [10]

    Sadeghinia M, Jansen K M B, Ernst L J 2012 Int. J. Adhes. Adhes. 32 82

    [11]

    Yamaguchi H, Enomoto T, Sato T, 2014 Proceedings of ICEP Toyama, Japan April 23-25, 2014 p507

    [12]

    Yang D G, Ernst L J, Hof C, Kiasat M S, Bisschop J, Janssen J, Kuper F, Liang Z N, Schravendeel R, Zhang G Q 2000 Microelectron. Reliab. 40 1533

    [13]

    Jiang J, Tsao S, O'Sullivan T, Razeghi M, Brown G J 2004 Infrared Phys. Technol. 45 143

    [14]

    He Y, Moreira B E, Overson A, Nakamura S H, Bider C, Briscoe J F 2000 Thermochim. Acta 357-358 1

    [15]

    White G K, Collins J G 1972 J. Low Temp. Phys. 7 43

    [16]

    Cheng X, Liu C, Silberschmidt V V 2012 Comput. Mater. Sci. 52 274

    [17]

    Chang R W, Patrick Mccluskey F 2009 J. Electron. Mater. 38 1855

    [18]

    Meng Q D, Yu Q, Zhang L W, L Y Q 2012 Acta Phys. Sin. 61 226103 (in Chinese)[孟庆端, 余倩, 张立文, 吕衍秋2012物理学报61 226103]

  • [1] 曹宇, 刘超颖, 赵耀, 那艳玲, 江崇旭, 王长刚, 周静, 于皓. 双电子传输层结构硫硒化锑太阳电池的界面特性优化. 物理学报, 2022, 71(3): 038802. doi: 10.7498/aps.71.20211525
    [2] 曹宇, 王长刚, 于皓. 双电子传输层结构硫硒化锑太阳电池的界面特性优化研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211525
    [3] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [4] 姜伟, 赵欢, 汪国崔, 王新柯, 韩鹏, 孙文峰, 叶佳声, 冯胜飞, 张岩. 应用太赫兹焦平面成像方法研究氧化镁晶体在太赫兹波段的双折射特性. 物理学报, 2020, 69(20): 208702. doi: 10.7498/aps.69.20200766
    [5] 曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静. 硒化锑薄膜太阳电池的模拟与结构优化研究. 物理学报, 2018, 67(24): 247301. doi: 10.7498/aps.67.20181745
    [6] 谷文浩, 常胜江, 范飞, 张选洲. 基于锑化铟亚波长阵列结构的太赫兹聚焦器件. 物理学报, 2016, 65(1): 010701. doi: 10.7498/aps.65.010701
    [7] 张晓玲, 孟庆端, 张立文, 耿东峰, 吕衍秋. 液氮冲击中锑化铟焦平面探测器形变研究. 物理学报, 2014, 63(15): 156101. doi: 10.7498/aps.63.156101
    [8] 孟庆端, 余倩, 张立文, 吕衍秋. InSb面阵探测器法线方向力学参数选取研究. 物理学报, 2012, 61(22): 226103. doi: 10.7498/aps.61.226103
    [9] 孟庆端, 张晓玲, 张立文, 吕衍秋. 128× 128 InSb探测器结构模型研究. 物理学报, 2012, 61(19): 190701. doi: 10.7498/aps.61.190701
    [10] 王利, 毕思文, 王果果. 利用三平面腔镜共焦腔产生多模压缩光束. 物理学报, 2010, 59(1): 87-91. doi: 10.7498/aps.59.87
    [11] 乔 辉, 廖 毅, 胡伟达, 邓 屹, 袁永刚, 张勤耀, 李向阳, 龚海梅. 碲镉汞焦平面光伏器件的实时γ辐照效应研究. 物理学报, 2008, 57(11): 7088-7093. doi: 10.7498/aps.57.7088
    [12] 俞振中, 金刚, 陈新强, 马可军. 锑化铟单晶中杂质的反常分凝. 物理学报, 1980, 29(1): 19-24. doi: 10.7498/aps.29.19
    [13] 俞振中, 金刚, 陈新强, 马可军. 锑化铟单晶的小平面生长及孪晶. 物理学报, 1980, 29(1): 11-18. doi: 10.7498/aps.29.11
    [14] 王国文, 包燕鹏, 曹金瑞, 张光勇. 平面应力对氧化亚铜晶体四个激子线系的影响. 物理学报, 1966, 22(7): 743-748. doi: 10.7498/aps.22.743
    [15] 吴自强, 汤定元. p型锑化铟中的噪声. 物理学报, 1966, 22(2): 205-213. doi: 10.7498/aps.22.205
    [16] 徐鸿达, 林兰英. 锑化铟的热处理. 物理学报, 1966, 22(6): 698-707. doi: 10.7498/aps.22.698
    [17] 黄启圣, 汤定元. 锑化铟中载流子的复合过程. 物理学报, 1965, 21(5): 1038-1048. doi: 10.7498/aps.21.1038
    [18] 萧楠, 刘益焕. 锗、硅、锑化铟和砷化镓的热膨涨——用X射线衍射法测量. 物理学报, 1964, 20(8): 699-704. doi: 10.7498/aps.20.699
    [19] 林蘭英, 徐鸿达. 锑化铟的机械损伤. 物理学报, 1964, 20(12): 1268-1277. doi: 10.7498/aps.20.1268
    [20] 赵晓峰, 陈式刚, 蒋月明. 锑与铟的解析原子波函数. 物理学报, 1962, 18(3): 175-176. doi: 10.7498/aps.18.175
计量
  • 文章访问数:  5010
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-26
  • 修回日期:  2016-09-30
  • 刊出日期:  2017-01-05

/

返回文章
返回