搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时效Ag-7wt.%Cu合金的微观组织、电阻率和硬度

李蕊 左小伟 王恩刚

引用本文:
Citation:

时效Ag-7wt.%Cu合金的微观组织、电阻率和硬度

李蕊, 左小伟, 王恩刚

Microstructure, resistivity, and hardness of aged Ag-7wt.%Cu alloy

Li Rui, Zuo Xiao-Wei, Wang En-Gang
PDF
导出引用
  • 采用差示扫描量热法、X射线衍射及透射电子显微镜研究了固溶和固溶-冷轧Ag-7wt.% Cu合金在时效过程中富Cu相的析出动力学和形貌特征,同时结合电阻率和显微硬度的测量,定量对比了固溶和固溶-冷轧Ag-7wt.% Cu合金时效过程中富Cu相对电阻率和硬度的影响及其机理.研究结果表明:固溶样品中富Cu相反应温度为300 C350 C,析出激活能为(1111.6)kJ/mol;而固溶-冷轧样品中由于形变能的存在,富Cu相温度降低为290 C330 C,析出激活能升高为(12812)kJ/mol.XRD结果证实富Cu相的析出过程与时效温度有关.固溶和固溶-冷轧合金在450 C时效后均能观察到球状的富Cu相,富Cu相的析出和溶解过程对电阻率和显微硬度有显著影响.当时效温度低于450 C时,随时效温度的提高,固溶-时效样品的电阻率降低,显微硬度增加;而固溶-冷轧-时效样品的电阻率和显微硬度均逐渐降低.显微硬度除了受富Cu相的影响外,还受到位错和形变孪晶的影响.当时效温度高于450 C时,两种样品的电阻率增大,而显微硬度降低.
    Ag-Cu alloys are used as both decorative materials because of beautiful appearance, and conductors due to excellent combinations of strength and electrical conductivity. The strength and electrical conductivity of Ag-Cu alloy are closely related to precipitation behavior of Cu-rich phase in Ag matrix. The morphology, size and volume fraction of Cu-rich phase have been highly concerned. In this work, a series of aging temperatures is used in both supersaturated solid-solution and cold-rolled Ag-7wt.%Cu samples to investigate the relationship between the precipitation behavior of Cu-rich phase and property by using differential scanning calorimetry (DSC), transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, and properties measurements (hardness and resistivity). The DSC results of as-solid-solution Ag-7wt.%Cu alloy show a distinct exothermic precipitation reaction of Cu out of Ag matrix ranging from 300 C to 350 C, and the activation energy is estimated to be (1111.6) kJ/mol according to Kissinger equation. Because of the existence of deformation energy, the DSC results of cold-rolled Ag-7wt.%Cu sample show a distinct exothermic precipitation reaction of Cu from Ag matrix between 290 C and 330 C, and the activation energy is (12812) kJ/mol. XRD analysis indicates that the dissolved Cu in Ag is dependent on ageing temperature, and the change of solubility of Cu in Ag is calculated by XRD curve. Microstructural analysis demonstrates that spherical Cu-rich phases are precipitated from Ag-matrix at 450 C in both solid-solution and cold-rolled Ag-7wt.%Cu alloys. Moreover, the banded structure of Cu-rich phase is found in the solid-solution sample after being aged at 450 C. The deformation twinning Ag is found in the cold-rolled sample. The precipitation and dissolution of Cu-rich phase in Ag matrix play important roles in the resistivity and microhardness. With ageing temperature increasing (ageing temperatures range from 200 to 450 C), the electrical resistivity of as-solid-solution aged sample decreases and the microhardness increases, however, both electrical resistivity and microhardness of as-cold-rolled aged sample decrease. With ageing temperature increasing further (over 450 C), the electrical resistivity increases and the microhardness decreases in both aged samples. Because of the formations of dislocation and deformation twinning Ag, the microhardness of cold-rolled sample reaches to 217 HV, which is higher than that of solid-solution sample. Strengthening and electrical resistivity models are built based on the microstructural characterization and concentration contributions. These theoretical predictions are in good agreement with experimental values. Our model demonstrates that the precipitation and dissloution of Cu in Ag significantly affect the electrical conductivity, and dislocation and deformation twinning play important roles in microhardess in Ag-Cu alloy. This work clarifies the influencing mechanism of different microstructures on the microhardness and resistivity of Ag-Cu alloy.
      通信作者: 王恩刚, egwang@mail.neu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51474066,51004038)和高等学校学科创新引智计划(批准号:B07015)资助的课题.
      Corresponding author: Wang En-Gang, egwang@mail.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51474066, 51004038) and the Program of Introducing Talents of Discipline to Universities, China (Grant No. B07015).
    [1]

    Northover S M, Northover J P 2014 Mater. Charact. 90 173

    [2]

    Wanhill RJ H 2005 Anal. Prev. 5 41

    [3]

    Embury J D, Han K 1998 Curr. Opin. Solid State Mater. Sci. 3 304

    [4]

    Lussana D, Castellero A, Vedani M, Ripamonti D, Angella G, Baricco M 2014 J. Alloys Compd. 615 S633

    [5]

    Subramanian P, Perepezko J 1993 J. Phase Equilib. 14 62

    [6]

    Wiest P Z 1933 Metallkd. 25 238

    [7]

    Hamana D, Boumaza L 2009 J. Alloys Compd. 477 217

    [8]

    Gayler M, Carrington W 1947 Acta Mater. 73 625

    [9]

    Butrymowicz D B, Manning J R, Read M E 1974 J. Phys. Chem. Ref. Data 3 527

    [10]

    Jones F, Leech P, Sykes C 1942 Proc. R. Soc. London Ser. A 181 154

    [11]

    Youssef S 1996 Physica B 228 337

    [12]

    Nada R 2004 Physica B 349 166

    [13]

    Wang C J, Ning Y T, Zhang K H, Geng Y H, Bi J, Zhang J M 2009 Mater. Sci. Eng. A 517 219

    [14]

    Kissinger H E 1957 Anal. Chem. 29 1702

    [15]

    Zuo X W, Zhao C C, Zhang L, Wang E G 2016 Mater. 9 569

    [16]

    Zhao C C, Zuo X W, Wang E G, Niu R M, Han K 2016 Mater. Sci. Eng. A 652 296

    [17]

    Kurz W, Trivedi R 1996 Metall. Mater. Trans. A 27 625

    [18]

    Northover P, Northover S, Wilson A 2013 Met. Sci. 2 253

    [19]

    Colombo S, Battaini P, Airoldi G 2007 J. Alloys Compd. 437 107

    [20]

    Gaganov A, Freudenberger J, Botcharova E, Schultz L 2006 Mater. Sci. Eng. A 437 313

    [21]

    Smith D R, Fickett F 1995 J. Res. Nat. Inst. Stand. Technol. 100 119

    [22]

    Zuo X W, Guo R, An B L, Zhang L, Wang E G 2016 Acta Metall. Sin. 65 143 (in Chinese)[左小伟, 郭睿, 安佰灵, 张林, 王恩刚2016金属学报65 143]

    [23]

    Mohamed I F, Yonenaga Y, Lee S, Edalati K, Horita Z 2015 Mater. Sci. Eng. A 627 111

    [24]

    Frye J H, Hume-Rothery W 1942 Proc. R. Soc. London Ser. A 8 1

    [25]

    Freudenberger J, Lyubimova J, Gaganov A, Witte H, Hickman A L, Jones H 2010 Mater. Sci. Eng. A 527 2004

    [26]

    Pugh S 1954 Philos. Mag. 45 823

    [27]

    Gottstein G 2007 Physikalische Grundlagen der Materialkunde (3rd Ed.) (New York:Springer-Verlag) p271

    [28]

    Hull D, Bacon D J 1989 Introduction to Dislocations (2nd Ed.) (Oxford:Pergamon Press) p243

    [29]

    Williamson G, Smallman R 1956 Philos. Mag. 1 34

  • [1]

    Northover S M, Northover J P 2014 Mater. Charact. 90 173

    [2]

    Wanhill RJ H 2005 Anal. Prev. 5 41

    [3]

    Embury J D, Han K 1998 Curr. Opin. Solid State Mater. Sci. 3 304

    [4]

    Lussana D, Castellero A, Vedani M, Ripamonti D, Angella G, Baricco M 2014 J. Alloys Compd. 615 S633

    [5]

    Subramanian P, Perepezko J 1993 J. Phase Equilib. 14 62

    [6]

    Wiest P Z 1933 Metallkd. 25 238

    [7]

    Hamana D, Boumaza L 2009 J. Alloys Compd. 477 217

    [8]

    Gayler M, Carrington W 1947 Acta Mater. 73 625

    [9]

    Butrymowicz D B, Manning J R, Read M E 1974 J. Phys. Chem. Ref. Data 3 527

    [10]

    Jones F, Leech P, Sykes C 1942 Proc. R. Soc. London Ser. A 181 154

    [11]

    Youssef S 1996 Physica B 228 337

    [12]

    Nada R 2004 Physica B 349 166

    [13]

    Wang C J, Ning Y T, Zhang K H, Geng Y H, Bi J, Zhang J M 2009 Mater. Sci. Eng. A 517 219

    [14]

    Kissinger H E 1957 Anal. Chem. 29 1702

    [15]

    Zuo X W, Zhao C C, Zhang L, Wang E G 2016 Mater. 9 569

    [16]

    Zhao C C, Zuo X W, Wang E G, Niu R M, Han K 2016 Mater. Sci. Eng. A 652 296

    [17]

    Kurz W, Trivedi R 1996 Metall. Mater. Trans. A 27 625

    [18]

    Northover P, Northover S, Wilson A 2013 Met. Sci. 2 253

    [19]

    Colombo S, Battaini P, Airoldi G 2007 J. Alloys Compd. 437 107

    [20]

    Gaganov A, Freudenberger J, Botcharova E, Schultz L 2006 Mater. Sci. Eng. A 437 313

    [21]

    Smith D R, Fickett F 1995 J. Res. Nat. Inst. Stand. Technol. 100 119

    [22]

    Zuo X W, Guo R, An B L, Zhang L, Wang E G 2016 Acta Metall. Sin. 65 143 (in Chinese)[左小伟, 郭睿, 安佰灵, 张林, 王恩刚2016金属学报65 143]

    [23]

    Mohamed I F, Yonenaga Y, Lee S, Edalati K, Horita Z 2015 Mater. Sci. Eng. A 627 111

    [24]

    Frye J H, Hume-Rothery W 1942 Proc. R. Soc. London Ser. A 8 1

    [25]

    Freudenberger J, Lyubimova J, Gaganov A, Witte H, Hickman A L, Jones H 2010 Mater. Sci. Eng. A 527 2004

    [26]

    Pugh S 1954 Philos. Mag. 45 823

    [27]

    Gottstein G 2007 Physikalische Grundlagen der Materialkunde (3rd Ed.) (New York:Springer-Verlag) p271

    [28]

    Hull D, Bacon D J 1989 Introduction to Dislocations (2nd Ed.) (Oxford:Pergamon Press) p243

    [29]

    Williamson G, Smallman R 1956 Philos. Mag. 1 34

  • [1] 李鸿明, 董闯, 王清, 李晓娜, 赵亚军, 周大雨. 电阻率与强度性能的关联及铜合金性能分区. 物理学报, 2019, 68(1): 016101. doi: 10.7498/aps.68.20181498
    [2] 伍友成, 刘高旻, 戴文峰, 高志鹏, 贺红亮, 郝世荣, 邓建军. 冲击波作用下Pb(Zr0.95Ti0.05)O3铁电陶瓷去极化后电阻率动态特性. 物理学报, 2017, 66(4): 047201. doi: 10.7498/aps.66.047201
    [3] 谷倩倩, 阮莹, 代富平. 微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响. 物理学报, 2017, 66(10): 106401. doi: 10.7498/aps.66.106401
    [4] 刘雅洁. 直接利用磁场和温度精确确定磁性材料La0.67Ca0.33MnO3和Pr0.7Sr0.3MnO3的电阻率. 物理学报, 2013, 62(1): 017601. doi: 10.7498/aps.62.017601
    [5] 罗晓东, 狄国庆. 溅射制备Ge,Nb共掺杂窄光学带隙和低电阻率的TiO2薄膜. 物理学报, 2012, 61(20): 206803. doi: 10.7498/aps.61.206803
    [6] 饶显君, 钟云波, 张增光, 王志强, 邓康, 任忠鸣, 徐匡迪. 静磁场复合电流下时效对Cu-Cr-Zr合金组织及性能的影响. 物理学报, 2012, 61(22): 221301. doi: 10.7498/aps.61.221301
    [7] 谌岩, 刘琳, 刘建华, 张瑞军. 高压处理对Cu75.15Al24.85合金组织与电阻率的影响. 物理学报, 2012, 61(17): 176103. doi: 10.7498/aps.61.176103
    [8] 张明晓, 田学雷, 郭风祥. 电磁感应式液固态金属电阻率定性测量装置及应用. 物理学报, 2009, 58(9): 6080-6085. doi: 10.7498/aps.58.6080
    [9] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [10] 樊飞, 班春燕, 王洋, 巴启先, 崔建忠. 普通铸造和低频电磁铸造7050铝合金电阻率-温度特性的研究. 物理学报, 2009, 58(1): 638-643. doi: 10.7498/aps.58.638
    [11] 蒋冬冬, 杜金梅, 谷 岩, 冯玉军. 冲击波加载下PZT 95/5铁电陶瓷的电阻率研究. 物理学报, 2008, 57(1): 566-570. doi: 10.7498/aps.57.566
    [12] 别少伟, 江建军, 马 强, 杜 刚, 袁 林, 邸永江, 冯则坤, 何华辉. 高电阻率多层纳米颗粒膜软磁特性及微波磁导率. 物理学报, 2008, 57(4): 2514-2518. doi: 10.7498/aps.57.2514
    [13] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [14] 周 昀, 龙云泽, 陈兆甲, 张志明, 万梅香. 水和乙醇对纳米管结构聚苯胺电阻率的影响. 物理学报, 2005, 54(1): 228-232. doi: 10.7498/aps.54.228
    [15] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能. 物理学报, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
    [16] 吴汉华, 汪剑波, 龙北玉, 吕宪义, 龙北红, 金曾孙, 白亦真, 毕冬梅. 电流密度对铝合金微弧氧化膜物理化学特性的影响. 物理学报, 2005, 54(12): 5743-5749. doi: 10.7498/aps.54.5743
    [17] 汪 渊, 徐可为. Cu-W薄膜表面形貌的分形表征与电阻率. 物理学报, 2004, 53(3): 900-904. doi: 10.7498/aps.53.900
    [18] 龙云泽, 陈兆甲, 张志明, 万梅香, 郑 萍, 王楠林, 贺朝会, 耿 斌, 杨海亮, 陈晓华, 王燕萍, 李国政. 纳米管结构聚苯胺的电阻率和磁化率. 物理学报, 2003, 52(1): 175-179. doi: 10.7498/aps.52.175
    [19] 李慧玲, 阮可青, 李世燕, 莫维勤, 樊荣, 罗习刚, 陈仙辉, 曹烈兆. MgB2和Mg0.93Li0.07B2的电阻率与霍尔效应研究. 物理学报, 2001, 50(10): 2044-2048. doi: 10.7498/aps.50.2044
    [20] 王强, 陆坤权, 李言祥. 液态InSb电阻率和热电势与温度的关系. 物理学报, 2001, 50(7): 1355-1358. doi: 10.7498/aps.50.1355
计量
  • 文章访问数:  4969
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-19
  • 修回日期:  2016-10-16
  • 刊出日期:  2017-01-20

/

返回文章
返回