搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高非线性光子晶体光纤中优化产生宽带紫外三次谐波

滕欢 柴路 王清月 胡明列

引用本文:
Citation:

高非线性光子晶体光纤中优化产生宽带紫外三次谐波

滕欢, 柴路, 王清月, 胡明列

Optimazation of broadband third-harmonic UV generation in highly nonlinear photonic crystal fiber

Teng Huan, Chai Lu, Wang Qing-Yue, Hu Ming-Lie
PDF
导出引用
  • 通过非线性光学频率转换技术产生不同频率的脉冲辐射是实现具有短波波长的激光光源的有效手段.近年来,光子晶体光纤技术的发展为解决传统的基于非线性晶体的频率转换系统面临的难以维护、转换效率低、不易推广等问题带来了新的解决思路.在频率转换研究领域中,紫外光波段的脉冲辐射产生一直以来都受到学者的广泛关注.国外已报道过利用超短脉冲抽运光子晶体光纤实现三次谐波产生,从而输出具有高灵敏度和高分辨率的窄带紫外脉冲辐射,但其紫外光转换效率较低,且光谱的可调谐能力有限,而这些缺陷恰恰可以由宽带紫外脉冲辐射的获得来改善.宽带紫外脉冲辐射的有效获得不仅意味着紫外光转换效率可大幅提高,并且若加以合适的滤波手段,还可获得内任意波长下的窄带宽的脉冲辐射,从而增加窄带紫外脉冲辐射的可调谐度,但目前相关报道较为有限.本文将中心波长为1035 nm,脉冲重复频率为50 MHz的飞秒激光耦合至一定长度的高非线性光子晶体光纤中,将其产生的拉曼自频移孤子作为三次谐波产生的抽运源,通过相位匹配作用,在深紫外波段产生高阶模式传导下的三次谐波.随后让超短脉冲以偏离光纤轴心一定角度入射,可进一步激发出具有更短波长的超高阶紫外光模式.通过激发多个邻近的超高阶紫外光模式,在一定连续范围内实现相位匹配,获得超高阶紫外光模式传输下紫外光转换效率为3.6%的宽带(32-360 nm)深紫外脉冲激光.实验结果与理论模拟结果相一致.
    The generation of pulse radiation with different frequency based on nonlinear optical frequency conversion technology is an effective method to produce lasers with the wavelength in the visible light or ultraviolet (UV) light range. In recent years, the developments of photonic crystal fiber (PCF) technology and ultra-short pulse technology have brought new solutions to the problems that the system needs great maintenance work, has low frequency conversion rate and much difficulty in popularizing, which the traditional frequency conversion system based on nonlinear crystal is confronting. Research on UV pulse radiation has been consistently attracting much attention of many academics. Particularly, narrowband and broadband UV pulse radiation sources are complementary, each having its own characteristics and scope of applications. The generation of narrowband UV pulse radiation of high sensitivity and high resolution through third harmonic generation (THG) in PCF has already been reported. However, the frequency conversion rate of narrowband UV pulse radiation is relatively low and the tunable ability of the spectrum is limited. These imperfections can be exactly completed by broadband UV pulse radiation. Broadband UV pulse radiation based on THG in PCF can be realized efficiently in PCF. This means that the conversion of UV light increases substantially, and simultaneously, the narrowband UV radiation of any wavelength in a certain range can be acquired more easily and the tunable ability of narrowband UV pulse radiation can be enhanced further. In this paper, the femtosecond pulse with a central wavelength of 1035 nm at a pulse repetition rate of 50 MHz is coupled into a highly nonlinear photonic crystal fiber with an appropriate length. The Raman self-frequency shift soliton produced from the ultra-short input pulse acts as a pump resource of third harmonic, transmitting through fundamental mode in PCF. Phase-matching between the fundamental mode and the high order modes is achieved and the third harmonic transmitted by specific high order modes (such as HE13) at deep UV wavelength is acquired effectively. Besides, the very high order UV mode (HOUVM) transmitting third harmonic with shorter wavelength is stimulated when intentionally inputting the ultra-short pulse into the PCF in the direction of a certain angle deviating from the axis of fiber core. Broadband deep UV (320-360 nm) pulse radiation with a UV light conversion rate of 3.6% can be acquired effectively in nonlinear PCF by stimulating a number of adjacent HOUVMs and achieving phase matching between the modes. Good agreement between theoretical results and experimental results is achieved.
      通信作者: 胡明列, huminglie@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61535009,61675150)和教育部长江学者创新团队(批准号:IRT13033)资助的课题.
      Corresponding author: Hu Ming-Lie, huminglie@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.61535009,61675150) and the Program for Changjiang Scholars and Innovative Research Team in Universities,China (Grant No.IRT13033).
    [1]

    Chalfie M 1994 Trends Genet. 10 151

    [2]

    Madsen J A, Boutz D R, Brodbelt J S 2010 J. Proteome Res. 9 4205

    [3]

    Margulies M, Egholm M, Altman W E, et al. 2005 Nature 437 376

    [4]

    Squier J, Muller M, Brakenhoff G, Wilson K R 1998 Opt. Express 3 315

    [5]

    Doronina L V, Voronin A A, Ivashkina O I, et al. 2009 Opt. Lett. 34 3373

    [6]

    Ranka J K, Windeler R S, Stentz A J 2000 Opt. Lett. 25 796

    [7]

    Yang H 2004 Ph. D. Dissertation (Beijing:Institude of Physics CAS) (in Chinese)[杨辉 2004 博士学位论文 (北京:中国科学院物理研究所)]

    [8]

    Peng N L, Li W H, Jiang S E, Yuan X D, Tang J, Liu Y G 2002 High Power Laser Part. Beams 14 254 (in Chinese)[彭能岭, 李文洪, 江少恩, 袁晓东, 唐军, 刘永刚 2002 强激光与粒子束 14 254]

    [9]

    Li Z Y, Chen B Q 2016 Physics 45 188 (in Chinese)[李志远, 陈宝琴 2016 物理 45 188]

    [10]

    Bloembergen N 1965 Nonlinear Optics (New York:Benjamin) p8

    [11]

    Knight J C 2003 Nature 424 847

    [12]

    Knight J C, Birks T A, Russell P S J, Atkin D M 1996 Opt. Lett. 21 1547

    [13]

    Russell P S J 2006 J. Lightwave Technol. 24 4729

    [14]

    Yelin D, Silberberg Y 1999 Opt. Express 5 169

    [15]

    Akimov D A, Ivanov A A, Alfimov M V, Grabchak E P, Shtykova A A, Petrov A N, Podshivalov A A, Zheltikov A M 2003 J. Raman Spectrosc. 34 1007

    [16]

    Serebryannikov E E, Fedotov A B, Zheltikov A M, Ivanov A, Alfimov M V, Knight J C 2006 J. Opt. Soc. Am. B 23 1975

    [17]

    Konorov S O, Fedotov A B, Serebryannikov E E, Mitrokhin V P, Sidorovbiryukov D A, Zheltikov A M 2005 J. Raman Spectrosc. 36 129

    [18]

    Liu B W, Hu M L, Wang S J, Chai L, Wang Q Y, Dai N L, Li J Y, Zheltikov A M 2010 Opt. Lett. 35 3958

    [19]

    Fedotov A B, Voronin A A, Serebryannikov E E, Fedotov I V, Mitrofanov A V, Ivanov A A, Sidorovbiryukov D A, Zheltikov A M 2007 Phys. Rev. E 75 16614

    [20]

    Efimov A, Taylor A J, Omenetto F G, Knight J C, Wadsworth W J, Russell P S J 2003 Opt. Lett. 11 2567

    [21]

    Efimov A, Taylor A J, Omenetto F G, Knight J C, Wadsworth W J, Russell P S J 2003 Opt. Lett. 11 910

    [22]

    Zheltikov A M 2005 Phys. Rev. A 72 43812

    [23]

    Zhang H Q, Wang P, Liu W J 2016 Chin. Phys. B 25 024209

  • [1]

    Chalfie M 1994 Trends Genet. 10 151

    [2]

    Madsen J A, Boutz D R, Brodbelt J S 2010 J. Proteome Res. 9 4205

    [3]

    Margulies M, Egholm M, Altman W E, et al. 2005 Nature 437 376

    [4]

    Squier J, Muller M, Brakenhoff G, Wilson K R 1998 Opt. Express 3 315

    [5]

    Doronina L V, Voronin A A, Ivashkina O I, et al. 2009 Opt. Lett. 34 3373

    [6]

    Ranka J K, Windeler R S, Stentz A J 2000 Opt. Lett. 25 796

    [7]

    Yang H 2004 Ph. D. Dissertation (Beijing:Institude of Physics CAS) (in Chinese)[杨辉 2004 博士学位论文 (北京:中国科学院物理研究所)]

    [8]

    Peng N L, Li W H, Jiang S E, Yuan X D, Tang J, Liu Y G 2002 High Power Laser Part. Beams 14 254 (in Chinese)[彭能岭, 李文洪, 江少恩, 袁晓东, 唐军, 刘永刚 2002 强激光与粒子束 14 254]

    [9]

    Li Z Y, Chen B Q 2016 Physics 45 188 (in Chinese)[李志远, 陈宝琴 2016 物理 45 188]

    [10]

    Bloembergen N 1965 Nonlinear Optics (New York:Benjamin) p8

    [11]

    Knight J C 2003 Nature 424 847

    [12]

    Knight J C, Birks T A, Russell P S J, Atkin D M 1996 Opt. Lett. 21 1547

    [13]

    Russell P S J 2006 J. Lightwave Technol. 24 4729

    [14]

    Yelin D, Silberberg Y 1999 Opt. Express 5 169

    [15]

    Akimov D A, Ivanov A A, Alfimov M V, Grabchak E P, Shtykova A A, Petrov A N, Podshivalov A A, Zheltikov A M 2003 J. Raman Spectrosc. 34 1007

    [16]

    Serebryannikov E E, Fedotov A B, Zheltikov A M, Ivanov A, Alfimov M V, Knight J C 2006 J. Opt. Soc. Am. B 23 1975

    [17]

    Konorov S O, Fedotov A B, Serebryannikov E E, Mitrokhin V P, Sidorovbiryukov D A, Zheltikov A M 2005 J. Raman Spectrosc. 36 129

    [18]

    Liu B W, Hu M L, Wang S J, Chai L, Wang Q Y, Dai N L, Li J Y, Zheltikov A M 2010 Opt. Lett. 35 3958

    [19]

    Fedotov A B, Voronin A A, Serebryannikov E E, Fedotov I V, Mitrofanov A V, Ivanov A A, Sidorovbiryukov D A, Zheltikov A M 2007 Phys. Rev. E 75 16614

    [20]

    Efimov A, Taylor A J, Omenetto F G, Knight J C, Wadsworth W J, Russell P S J 2003 Opt. Lett. 11 2567

    [21]

    Efimov A, Taylor A J, Omenetto F G, Knight J C, Wadsworth W J, Russell P S J 2003 Opt. Lett. 11 910

    [22]

    Zheltikov A M 2005 Phys. Rev. A 72 43812

    [23]

    Zhang H Q, Wang P, Liu W J 2016 Chin. Phys. B 25 024209

  • [1] 周江平, 周媛媛, 周学军. 非对称信道相位匹配量子密钥分发. 物理学报, 2023, 72(14): 140302. doi: 10.7498/aps.72.20230652
    [2] 杜芊, 陈溢杭. 硅纳米颗粒阵列中准连续域束缚态诱导三次谐波增强效应. 物理学报, 2021, 70(15): 154206. doi: 10.7498/aps.70.20210332
    [3] 范鑫, 梁红静, 单立宇, 闫博, 高庆华, 马日, 丁大军. 基于高次谐波产生的极紫外偏振涡旋光. 物理学报, 2020, 69(4): 044203. doi: 10.7498/aps.69.20190834
    [4] 杨玖龙, 元晴晨, 陈润丰, 方汉林, 肖发俊, 李俊韬, 姜碧强, 赵建林, 甘雪涛. 硅超构表面上强烈增强的三次谐波. 物理学报, 2019, 68(21): 214207. doi: 10.7498/aps.68.20190789
    [5] 李建设, 李曙光, 赵原源, 刘强, 范振凯, 王光耀. 在单零色散微结构光纤中一次抽运同时发生两组四波混频的实验观察. 物理学报, 2016, 65(21): 214201. doi: 10.7498/aps.65.214201
    [6] 李晓明, 沈学举, 刘恂, 王琳. KTP倍频器件温度适应性扩展研究. 物理学报, 2015, 64(9): 094205. doi: 10.7498/aps.64.094205
    [7] 陈汉武, 李科, 赵生妹. 基于相位匹配的量子行走搜索算法及电路实现. 物理学报, 2015, 64(24): 240301. doi: 10.7498/aps.64.240301
    [8] 刘作业, 史彦超, 胡碧涛. 空气中等离子光栅诱导探测光丝三次谐波辐射放大的实验研究. 物理学报, 2014, 63(18): 184206. doi: 10.7498/aps.63.184206
    [9] 赵兴涛, 郑义, 韩颖, 周桂耀, 侯峙云, 沈建平, 王春, 侯蓝田. 光子晶体光纤包层可见光及红外宽带色散波产生. 物理学报, 2013, 62(6): 064215. doi: 10.7498/aps.62.064215
    [10] 曾维友, 谢康, 陈伟, 毛书哲. TE-TM模变换型光波导隔离器的理论研究. 物理学报, 2012, 61(16): 164201. doi: 10.7498/aps.61.164201
    [11] 任爱红, 刘正颖, 张蓉竹, 刘静伦, 孙年春. 准相位匹配倍频系统的带宽性质研究. 物理学报, 2010, 59(10): 7050-7054. doi: 10.7498/aps.59.7050
    [12] 马晶, 刘迎. KBe2BO3F2飞秒光参量放大中的群速匹配. 物理学报, 2009, 58(7): 4697-4701. doi: 10.7498/aps.58.4697
    [13] 周城, 高艳侠, 王培吉, 张仲, 李萍. 负折射率材料中二次谐波转换效率的理论分析. 物理学报, 2009, 58(2): 914-918. doi: 10.7498/aps.58.914
    [14] 李 昆, 徐妙华, 金 展, 刘运全, 王兆华, 令维军, 张 杰. 对超短脉冲强激光在大气通道中产生的三次谐波偏振特性及白光光谱调制特性的研究. 物理学报, 2007, 56(3): 1439-1442. doi: 10.7498/aps.56.1439
    [15] 刘建国, 开桂云, 薛力芳, 张春书, 刘艳格, 王 志, 郭宏雷, 李 燕, 孙婷婷, 袁树忠, 董孝义. 基于高非线性光子晶体光纤Sagnac环形镜的全光开关. 物理学报, 2007, 56(2): 941-945. doi: 10.7498/aps.56.941
    [16] 陈 亮, 梁昌洪, 党晓杰. 非线性左手材料中的二次谐波. 物理学报, 2007, 56(11): 6398-6402. doi: 10.7498/aps.56.6398
    [17] 贾亚青, 闫培光, 吕可诚, 张铁群, 朱晓农. 高非线性光子晶体光纤中飞秒脉冲的传输特性和超连续谱产生机制的实验研究及模拟分析. 物理学报, 2006, 55(4): 1809-1814. doi: 10.7498/aps.55.1809
    [18] 陈宝振, 黄祖洽. 飞秒强激光在充气毛细管中产生三次谐波的效率. 物理学报, 2005, 54(1): 113-116. doi: 10.7498/aps.54.113
    [19] 郝作强, 张 杰, 张 喆, 奚婷婷, 郑志远, 远晓辉, 王兆华. 空气中激光等离子体通道的三次谐波辐射研究. 物理学报, 2005, 54(7): 3173-3177. doi: 10.7498/aps.54.3173
    [20] 邵钟浩. 具有非均匀零色散波长光纤中的四波混频. 物理学报, 2001, 50(1): 73-78. doi: 10.7498/aps.50.73
计量
  • 文章访问数:  4669
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-23
  • 修回日期:  2016-11-28
  • 刊出日期:  2017-02-05

/

返回文章
返回