搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微结构阵列对近壁面层液体运动规律的影响

乔小溪 张向军 田煜 孟永钢

引用本文:
Citation:

微结构阵列对近壁面层液体运动规律的影响

乔小溪, 张向军, 田煜, 孟永钢

Effect of micro-structure array on the liquid flow behaviors of near-surface layer

Qiao Xiao-Xi, Zhang Xiang-Jun, Tian Yu, Meng Yong-Gang
PDF
导出引用
  • 表面微结构阵列可用于调控微间隙中液体的流动行为、运动阻力和混合特性等.本文采用石英晶体微天平实验研究了微凹坑和微圆柱阵列以及微结构表面形貌对近壁面层液体运动行为的影响.石英晶体微天平的系统频移和半带宽变化与近壁面层液体的运动行为密切相关,研究显示,表面微凹坑倾向于受限液体的运动,因此微凹坑表面引起的频移绝对值明显大于与其具有相同特征尺寸的微圆柱表面,且均大于光滑表面.粗糙表面结构会明显地增加近壁面区域液体运动的紊乱程度,因此具有粗糙顶部的二级微圆柱表面引起的半带宽变化明显大于与其具有相同特征尺寸的微圆柱表面,且均大于光滑表面.该研究为微流道表面阵列微结构形式的选择提供了实验依据.
    Study of the liquid flowing behavior through the micro-structure array has aroused the significant interest due to its key roles in the fields of microfluidics, micro-mixers, micro-heat exchangers, tribology, etc. Micro-structure array can significantly affect the liquid flowing characteristics of the near-surface layer and the solid-liquid interfacial properties, like adhesion, surface wetting, shear viscous resistance, interfacial slip, etc. The researches indicate that the stripe- and square-patterned electrodes can improve the storage properties of the lithium-ion battery due to its ability to promote the diffusion of the liquid electrolyte. Micro-structure array patterned micro-channel can reduce the friction drag of liquid flowing through it. And the surface fabricated with lotus-leaf-like dual-scale structure array can achieve the super-hydrophobicity. For a micro-structure array, its influences on the liquid flowing behaviors greatly depend on the shape and size of the micro-structure, and the porosity, arrangement and size of the array. Here, we mainly focus on the influences of the micro-structure shape and surface topography on the liquid flowing behaviors, by adopting the same array porosity, arrangement and size, and the same feature size of the micro-structure. In the present paper, we prepare three different surfaces, which are the micro-pillar array surfaces, micro-hole array surface, and dual-scale micro-pillar array surface (i.e., micro-pillar with rough top surface), respectively. Their influences on the liquid flowing characteristics of the near-surface layer are investigated by quartz crystal microbalance (QCM). The QCM is a powerful and promising technique in studying the solid/liquid interfacial behaviors. Its main output parameters are frequency shift and half-bandwidth variation, which are closely related to the rheological properties and flow characteristics of the near-surface liquid layer. When the QCM chip is patterned with micro-structure array, it will inevitably influence the liquid motion and makes it more complicated, like the generation of non-laminar motion, the trapping of liquid in the gap, and the conversion of the in-plane surface motion into the surface-normal liquid motion. The experimental results show that for the same tested liquid, the frequency shift caused by the micro-hole array is higher than that by the micro-pillar array with the same feature size. And the dual-scale micro-pillar array surface results in a higher half-bandwidth variation than the micro-pillar array surface with the same feature size. It demonstrates that micro-hole tends to confine the liquid motion and make the trapped liquid oscillate with the substrate like a rigid film, thus resulting in a higher frequency shift. The dual-scale micro-structure will render the flow behavior of the near-surface layer more chaotic, thus showing a larger half-bandwidth variation. This study provides an experimental basis for selecting the type of micro-structure used in the microfluidic chip to better control the liquid flowing and mixing.
      通信作者: 乔小溪, qxx41051134@126.com
    • 基金项目: 中央高校基本业务费(批准号:FRF-TP-15-084A1);中国博士后科学基金(批准号:2016M591067);国家重点基础研究发展计划(批准号:2012CB934101)和国家自然科学基金(批准号:51375254)资助的课题.
      Corresponding author: Qiao Xiao-Xi, qxx41051134@126.com
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities,China (Grant No.FRF-TP-15-084A1),the China Postdoctoral Science Foundation (Grant No.2016M591067),the National Basic Research Program of China (Grant No.2012CB934101),and the National Natural Science Foundation of China (Grant No.51375254).
    [1]

    Darbois Texier B, Laurent P, Stoukatch S, Dorbolo S 2016 Microfluid. Nanofluid 20 53

    [2]

    Yamada T, Hong C, Gregory O J, Faghri M 2011 Microfluid Nanofluid. 11 45

    [3]

    Gu Y, Zhao G, Zheng J, Li Z, Liu W, Muhammad F K 2014 Ocean Eng. 81 50

    [4]

    Lyu S, Nguyen D C, Kim D, Hwang W, Yoon B 2013 Appl. Surf. Sci. 286 206

    [5]

    Jung Y C, Bhushan B 2010 J. Phys. Condens. Matter:Instit. Phys. J. 22 35104

    [6]

    Woolford B, Prince J, Maynes D, Webb B W 2009 Phys. Fluids 21 85106

    [7]

    Ou J, Perot B, Rothstein J P 2004 Phys. Fluids 16 4635

    [8]

    Lee S H, Kim W B 2016 J. Power Sources 307 38

    [9]

    Goullet A, Glasgow I, Aubry N 2006 Mech. Res. Commun. 33 739

    [10]

    Priezjev N V 2011 J. Chem. Phys. 135 204704

    [11]

    Suh M, Chae Y, Kim S, Hinoki T, Kohyama A 2010 Tribol. Int. 43 1508

    [12]

    Mills A, Burns L, Rourke C O, Madsen H 2016 Sol. Energ. Mat. Sol. C 144 78

    [13]

    Rechendorff K, Hovgaard M B, Foss M, Besenbacher F 2007 J. Appl. Phys. 101 114502

    [14]

    Daikhin L, Gileadi E, Katz G, Tsionsky V, Urbakh M, Zagidulin D 2002 Anal. Chem. 74 554

    [15]

    Levi M D, Daikhin L, Aurbach D, Presser V 2016 Electrochem. Commun. 67 16

    [16]

    Daikhin L, Urbakh M 1996 Langmuir 12 6354

  • [1]

    Darbois Texier B, Laurent P, Stoukatch S, Dorbolo S 2016 Microfluid. Nanofluid 20 53

    [2]

    Yamada T, Hong C, Gregory O J, Faghri M 2011 Microfluid Nanofluid. 11 45

    [3]

    Gu Y, Zhao G, Zheng J, Li Z, Liu W, Muhammad F K 2014 Ocean Eng. 81 50

    [4]

    Lyu S, Nguyen D C, Kim D, Hwang W, Yoon B 2013 Appl. Surf. Sci. 286 206

    [5]

    Jung Y C, Bhushan B 2010 J. Phys. Condens. Matter:Instit. Phys. J. 22 35104

    [6]

    Woolford B, Prince J, Maynes D, Webb B W 2009 Phys. Fluids 21 85106

    [7]

    Ou J, Perot B, Rothstein J P 2004 Phys. Fluids 16 4635

    [8]

    Lee S H, Kim W B 2016 J. Power Sources 307 38

    [9]

    Goullet A, Glasgow I, Aubry N 2006 Mech. Res. Commun. 33 739

    [10]

    Priezjev N V 2011 J. Chem. Phys. 135 204704

    [11]

    Suh M, Chae Y, Kim S, Hinoki T, Kohyama A 2010 Tribol. Int. 43 1508

    [12]

    Mills A, Burns L, Rourke C O, Madsen H 2016 Sol. Energ. Mat. Sol. C 144 78

    [13]

    Rechendorff K, Hovgaard M B, Foss M, Besenbacher F 2007 J. Appl. Phys. 101 114502

    [14]

    Daikhin L, Gileadi E, Katz G, Tsionsky V, Urbakh M, Zagidulin D 2002 Anal. Chem. 74 554

    [15]

    Levi M D, Daikhin L, Aurbach D, Presser V 2016 Electrochem. Commun. 67 16

    [16]

    Daikhin L, Urbakh M 1996 Langmuir 12 6354

  • [1] 梅涛, 陈占秀, 杨历, 王坤, 苗瑞灿. 纳米通道粗糙内壁对流体流动行为的影响. 物理学报, 2019, 68(9): 094701. doi: 10.7498/aps.68.20181956
    [2] 周宁, 张兰芝, 李东伟, 常峻巍, 王毕艺, 汤磊, 林景全, 郝作强. 飞秒平顶光束经微透镜阵列在熔融石英中的成丝及其超连续辐射. 物理学报, 2018, 67(17): 174205. doi: 10.7498/aps.67.20180306
    [3] 唐琬婷, 肖时芳, 孙学贵, 胡望宇, 邓辉球. 液态锂在铜的微通道中的流动行为. 物理学报, 2016, 65(10): 104705. doi: 10.7498/aps.65.104705
    [4] 武宇, 易仕和, 何霖, 全鹏程, 朱杨柱. 基于流动显示的压缩拐角流动结构定量研究. 物理学报, 2015, 64(1): 014703. doi: 10.7498/aps.64.014703
    [5] 崔海航, 谭晓君, 张鸿雁, 陈力. 自驱动Janus微球近壁运动特性实验与数值模拟研究. 物理学报, 2015, 64(13): 134705. doi: 10.7498/aps.64.134705
    [6] 陈其杰, 周桂耀, 石富坤, 李端明, 苑金辉, 夏长明, 葛姝. 微结构光纤近红外色散波产生的研究. 物理学报, 2015, 64(3): 034215. doi: 10.7498/aps.64.034215
    [7] 王祥, 钞润泽, 管仁国, 李元东, 刘春明. 金属熔体近壁面流动剪切模型及其对金属凝固影响的理论研究. 物理学报, 2015, 64(11): 116601. doi: 10.7498/aps.64.116601
    [8] 丁益民, 杨昌平. 考虑人类流动行为的动态复杂网络研究. 物理学报, 2012, 61(23): 238901. doi: 10.7498/aps.61.238901
    [9] 吴婧, 王鸣. 胶体晶体微结构光纤传输特性研究. 物理学报, 2012, 61(6): 064215. doi: 10.7498/aps.61.064215
    [10] 谢立强, 吴学忠, 李圣怡, 王浩旭, 董培涛. 基于剪应力检测的石英微结构及其陀螺效应研究. 物理学报, 2010, 59(10): 6896-6901. doi: 10.7498/aps.59.6896
    [11] 熊毅, 张向军, 张晓昊, 温诗铸. 电场作用下5CB液晶分子的近壁面层黏弹性的QCM研究. 物理学报, 2010, 59(11): 7998-8004. doi: 10.7498/aps.59.7998
    [12] 彭文博, 刘石勇, 肖海波, 张长沙, 石明吉, 曾湘波, 徐艳月, 孔光临, 俞育德. 微晶硅薄膜带隙态及微结构的研究. 物理学报, 2009, 58(8): 5716-5720. doi: 10.7498/aps.58.5716
    [13] 王 权, 丁建宁, 何宇亮, 薛 伟, 范 真. 氢化硅薄膜介观力学行为及其与微结构内禀关联特性. 物理学报, 2007, 56(8): 4834-4840. doi: 10.7498/aps.56.4834
    [14] 张晓昊, 张向军, 刘永和, J. A. Schaefer, 温诗铸. 微间隙受限液体行为与昆虫爪垫在光滑壁面的粘着机理. 物理学报, 2007, 56(8): 4722-4727. doi: 10.7498/aps.56.4722
    [15] 王栋栋, 陈云琳, 李 兵, 颜采繁, 许京军, 张光寅. 利用光衍射效应探测周期极化微结构晶体. 物理学报, 2007, 56(12): 7153-7157. doi: 10.7498/aps.56.7153
    [16] 刘国汉, 丁 毅, 朱秀红, 陈光华, 贺德衍. HW-MWECR-CVD法制备氢化微晶硅薄膜及其微结构研究. 物理学报, 2006, 55(11): 6147-6151. doi: 10.7498/aps.55.6147
    [17] 周炳卿, 刘丰珍, 朱美芳, 谷锦华, 周玉琴, 刘金龙, 董宝中, 李国华, 丁 琨. 利用x射线小角散射技术研究微晶硅薄膜的微结构. 物理学报, 2005, 54(5): 2172-2175. doi: 10.7498/aps.54.2172
    [18] 王永谦, 陈长勇, 陈维德, 杨富华, 刁宏伟, 许振嘉, 张世斌, 孔光临, 廖显伯. a-Si∶O∶H薄膜微结构及其高温退火行为研究. 物理学报, 2001, 50(12): 2418-2422. doi: 10.7498/aps.50.2418
    [19] 郭晓旭, 朱美芳, 刘金龙, 韩一琴, 许怀哲, 董宝中, 生文君, 韩和相. 高氢稀释制备微晶硅薄膜微结构的研究. 物理学报, 1998, 47(9): 1542-1547. doi: 10.7498/aps.47.1542
    [20] 郏正明, 杨根庆, 程兆年, 柳襄怀, 邹世昌. Si(001)表面层及近表面层原子行为的分子动力学模拟研究. 物理学报, 1994, 43(4): 609-615. doi: 10.7498/aps.43.609
计量
  • 文章访问数:  4710
  • PDF下载量:  281
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-26
  • 修回日期:  2016-11-14
  • 刊出日期:  2017-02-05

/

返回文章
返回