搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnSe量子点敏化纳米TiO2薄膜光电子特性研究

任伦 李葵英 崔洁圆 赵杰

引用本文:
Citation:

ZnSe量子点敏化纳米TiO2薄膜光电子特性研究

任伦, 李葵英, 崔洁圆, 赵杰

Photoelectron characteristics of ZnSe quantum dots-sensitized mesoporous La-doped nano-TiO2 film

Ren Lun, Li Kui-Ying, Cui Jie-Yuan, Zhao Jie
PDF
导出引用
  • 利用改进的直接吸附法制备核-壳ZnSe量子点敏化介孔掺镧nano-TiO2复合薄膜.通过瞬态光伏和稳态表面光伏技术以及相应的检测手段,探测复合薄膜的微结构、光电子特性以及光生载流子在异质结薄膜中的传输机制.研究证实,包覆在ZnSe量子点外层的配体L-Cys主要通过其羧基与介孔nano-TiO2表面未饱和的Ti原子键合,并完成量子点敏化复合薄膜的制备,由此实现对量子点在薄膜上沉积量的有效控制.实验结果表明:ZnSe量子点敏化nano-TiO2薄膜的表面光伏响应出现在300800 nm(紫外-可见-近红外)波长范围内,敏化后nano-TiO2薄膜的光学带隙远小于敏化前薄膜以及ZnSe量子点的光学带隙;与具有p-型光伏特性的ZnSe量子点不同,敏化后薄膜显示出明显的n-型光伏特性,这将有利于光生电子由薄膜的外表面向光阳极基底方向迁移和注入;敏化后薄膜中光生载流子寿命、电子-空穴对分离速度和扩散长度的提高导致了瞬态光伏响应强度的增加和响应范围的扩大.
    In the paper, the core-shell ZnSe quantum dots (QDs)-sensitized mesoporous La-doped nano-TiO2 thin film is prepared by a direct adsorption method. Photoelectron characteristics, photogenerated carriers transport mechanism, and microstructure of the QDs-sensitized nano-TiO2 thin film are probed via the stationary surface photovoltaic (SPV) and the transient photovoltaic technologies, supplemented by the Brunauer-Emmet-Teller adsorption isotherm technique, scanning electron microscope, Fourier transform infrared (FT-IR) absorption spectrum, and ultraviolet-visible (UV-VIS) absorption spectrum. The experimental results confirm that the surface of the nano-TiO2 film is covered with the ZnSe QDs with smaller particles by a chemical absorbing way, resulting in denser composite film of the QDs and the mesoporous nano-TiO2 than the nano-TiO2 film. In our experiment, the adsorption quantity of ZnSe QDs on nano-TiO2 film can be controlled effectively. The results show that ligand L-Cys capped at the outer layer of ZnSe QDs plays an important role in the sensitization process. Specifically, the peak of SH in the ligand disappears at 2552 cm-1 in the FT-IR spectrum of the ZnSe QDs capped by the ligand as a stabilizer. This indicates that the SH bond is broken. In the meantime, the peak of the CS stretching vibration in the ligand shifts from 638 cm-1 to 663 cm-1 due to the formation of ZnS bond. These imply that the core-shell ZnSe/ZnS/L-Cys QDs are obtained. On the other hand, according to the peak of COOH stretching vibration disappearing at 1600 cm-1 in the FT-IR spectrum of the core-shell QDs-sensitized mesoporous nano-TiO2 film, the unsaturated Ti atoms on the surface of the TiO2 film are bonded to carboxy groups from the ligand capped at the QDs. That is, the ligand acts as a bridge between the QDs and the nano-TiO2 film for achieving the sensitization. Some excellent photovoltaic characteristics of the composite film are found as follows. 1) The SPV responses of the QDs-sensitized film appear in a wavelength region of 300 nm to 800 nm (UV-VIS-Near-IR), causing the region of SPV response to enlarge about 200 nm over that of the ZnSe QDs, and 400 nm over that of the nano-TiO2 thin film. 2) The QDs-sensitized film displays an n-type photovoltaic characteristic that is different from that of the QDs. This may be more favorable for transferring those carriers from the film surface to the photo-anode material. 3) Both the separation rate and the diffusion length of photogenerated electron-hole pairs are obviously increased, and the lifetime of free charge carriers in the ZnSe QDs-sensitized film prolongs about an order of magnitude over that of the nano-TiO2 film and ZnSe QDs.
      通信作者: 李葵英, kuiyingli@ysu.edu.cn
    • 基金项目: 河北省自然科学基金(批准号:E2013203296)资助的课题.
      Corresponding author: Li Kui-Ying, kuiyingli@ysu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. E2013203296).
    [1]

    Grtzel M 2001 Nature 414 338

    [2]

    Zaban A, Micic O I, Gregg B A, Nozik A J 1998 Langmuir 14 3153

    [3]

    Gimenez S, Mora-Sero I, Macor L, Guijarro N, Lana-Villarreal T, Gomez R, Diguna L J, Shen Q, Toyoda T, Bisquert J 2009 Nanotechnology 20 295204

    [4]

    Nozik A J 2002 Physica E 14 115

    [5]

    Dai S Y, Kong F T, Hu L H, Shi C W, Fang X Q, Pan X, Wang K J 2005 Acta Phys. Sin. 54 1919 (in Chinese) [戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘旭, 王孔嘉 2005 物理学报 54 1919]

    [6]

    Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M 2008 J. Am. Chem. Soc. 130 1124

    [7]

    Yu W W, Qu L H, Guo W Z, Peng X G 2003 Chem. Mater. 15 2854

    [8]

    Nozik A J, Beard M C, Luther J M, Law M, Ellingson R J, Johnson J C 2010 Chem. Rev. 110 6873

    [9]

    Robel I, Subramanian V, Kuno M, Kamat P V 2006 J. Am. Chem. Soc. 128 2385

    [10]

    Nozik A J 2010 Nano Lett. 10 2735

    [11]

    Schaller R D, Agranovich V M, Klimov V I 2005 Nat. Phys. 1 189

    [12]

    Klimov V I 2006 J. Phys. Chem. B 110 16827

    [13]

    Diguna L J, Shen Q, Kobayashi J, Toyoda T 2007 Appl. Phys. Lett. 91 023116

    [14]

    Li L Q, Liu A P, Zhao H X, Cui C, Tang W H 2012 Acta Phys. Sin. 61 108201 (in Chinese) [李立群, 刘爱萍, 赵海新, 崔灿, 唐为华 2012 物理学报 61 108201]

    [15]

    Tian J, Gao R, Zhang Q, Zhang S, Li Y, Lan J, Qu X, Cao G 2012 J. Phys. Chem. C 116 18655

    [16]

    Hossain M A, Jennings J R, Shen C, Pan J H, Koh Z Y, Mathews N, Wang Q 2012 J. Mater. Chem. 22 16235

    [17]

    Zhou Z, Yuan S, Fan J, Hou Z, Zhou W, Du Z, Wu S 2012 Nanoscale Res. Lett. 7 652

    [18]

    Bang J H, Kamat P V 2010 Adv. Funct. Mater. 20 1970

    [19]

    Huang S, Zhang Q, Huang X, Guo X, Deng M, Li D, Luo Y, Shen Q, Toyoda T, Meng Q 2010 Nanotechnology 21 375201

    [20]

    Gao X F, Li H B, Sun W T, Chen Q, Tang F Q, Peng L M 2009 J. Phys. Chem. C 113 7531

    [21]

    Li G S, Zhang D Q, Yu J C 2009 Environ. Sci. Technol. 43 7079

    [22]

    Zhou Z J, Fan J Q, Wang X, Sun W Z, Zhou W H, Du Z L, Wu S X 2011 ACS Appl. Mater. Interfaces 3 2189

    [23]

    Shen H, Jiao X, Oron D, Li J, Lin H 2013 J. Power Sources 240 8

    [24]

    Shen X, Jia J, Lin Y, Zhou X 2015 J. Power Sources 277 215

    [25]

    Lee H, Wang M, Chen P, Gamelin D R, Zakeeruddin S M, Gratzel M, Nazeeruddin M K 2009 Nano Lett. 9 4221

    [26]

    Jumabekov A N, Siegler T D, Cordes N, Medina D D, Bhm D, Garbus P, Meroni S, Peter L M, Bein T 2014 J. Phys. Chem. C 118 25853

    [27]

    Chang C H, Lee Y L 2007 Appl. Phys. Lett. 91 053503

    [28]

    Nair P K, Nair M T S, Garcia V M, Arenas O L, Pena Y, Castillo A, Ayala I T, Gomezdaza O, Sanchez A, Campos J, Hu H, Suarez R, Rincon M E 1998 Sol. Energy Mater. Sol. Cells 52 313

    [29]

    Li W J, Zhong X H 2015 Acta Phys. Sin. 64 038806 (in Chinese) [李文杰, 钟新华 2015 物理学报 64 038806]

    [30]

    Mora-Sero I, Gimenez S, Moehl T, Fabregat-Santiago F, Lana-Villareal T, Gomez R, Bisquert J 2008 Nanotechnology 19 424007

    [31]

    Zhu G, Pan L, Xu T, Sun Z 2011 ACS Appl. Mater. Interfaces 3 3146

    [32]

    Ma X, Shen Y, Wu G, Wu Q, Pei B, Cao M, Gu F 2012 J. Alloys Compd. 538 61

    [33]

    Yu X Y, Lei B X, Kuang D B, Su C Y 2011 Chem. Sci. 2 1396

    [34]

    Song X, Wang M, Shi Y, Deng J, Yang Z, Yao X 2012 Electrochim. Acta 81 260

    [35]

    Antonelli D M, Ying J Y 1995 Angew. Chem. Int. Ed. Engl. 34 2014

    [36]

    Jing L Q, Sun X J, Xin B F, Wang B Q, Cai W M, Fu H G 2004 J. Solid State Chem. 177 3375

    [37]

    Ding I K, Ttreault N, Brillet J, Hardin B E, Smith E H, Rosenthal S J, Sauvage F, Grtzel M, McGehee M D 2009 Adv. Funct. Mater. 19 2431

    [38]

    Murase N, Gao M 2004 Mater. Lett. 58 3898

    [39]

    Liu B T, Yu H Y, Wang Y, Peng L L, Han T, Tian L L, Yan L T 2015 J. Alloys Compd. 640 246

    [40]

    Schroder D K 2002 Mater. Sci. Eng. 92 196

    [41]

    Wei X, Xie T, Xu D, Zhao Q, Pang S, Wang D 2008 Nanotechnology 19 275707

    [42]

    Nakade S, Saito Y, Kubo W, Kanzaki T, Kitamura T, Wada Y, Yanagida S 2004 J. Phys. Chem. B 108 1628

    [43]

    Kronik L, Shapira Y 1999 Surf. Sci. Rep. 37 1

    [44]

    Lowell S, Shields J E, Thomas M A, Thommes M 2004 Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density (Dordrecht: Kluwer Academic) pp20-22

    [45]

    Li K Y, Liu T, Zhou B J, Wei S L, Yang W Y 2010 Acta Phys.-Chim. Sin. 26 403 (in Chinese) [李葵英, 刘通, 周冰晶, 魏赛玲, 杨伟勇 2010 物理化学学报 26 403]

    [46]

    Li J G, Ishigaki T, Sun X D 2007 J. Phys. Chem. C 111 4969

    [47]

    Tauc J, Menth A 1972 J. Non-Cryst. Solids 8 569

    [48]

    Li K Y, Shan Q S, Zhu R P, Yin H, Lin Y Y, Wang L Q 2015 Nanoscale 7 7906

    [49]

    Duzhko V, Koch F, Dittrich T 2002 J. Appl. Phys. 91 9432

    [50]

    Zhang Q, Wang D, Wei X, Xie T, Li Z, Lin Y, Yang M 2005 Thin Solid Films 491 242

  • [1]

    Grtzel M 2001 Nature 414 338

    [2]

    Zaban A, Micic O I, Gregg B A, Nozik A J 1998 Langmuir 14 3153

    [3]

    Gimenez S, Mora-Sero I, Macor L, Guijarro N, Lana-Villarreal T, Gomez R, Diguna L J, Shen Q, Toyoda T, Bisquert J 2009 Nanotechnology 20 295204

    [4]

    Nozik A J 2002 Physica E 14 115

    [5]

    Dai S Y, Kong F T, Hu L H, Shi C W, Fang X Q, Pan X, Wang K J 2005 Acta Phys. Sin. 54 1919 (in Chinese) [戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘旭, 王孔嘉 2005 物理学报 54 1919]

    [6]

    Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M 2008 J. Am. Chem. Soc. 130 1124

    [7]

    Yu W W, Qu L H, Guo W Z, Peng X G 2003 Chem. Mater. 15 2854

    [8]

    Nozik A J, Beard M C, Luther J M, Law M, Ellingson R J, Johnson J C 2010 Chem. Rev. 110 6873

    [9]

    Robel I, Subramanian V, Kuno M, Kamat P V 2006 J. Am. Chem. Soc. 128 2385

    [10]

    Nozik A J 2010 Nano Lett. 10 2735

    [11]

    Schaller R D, Agranovich V M, Klimov V I 2005 Nat. Phys. 1 189

    [12]

    Klimov V I 2006 J. Phys. Chem. B 110 16827

    [13]

    Diguna L J, Shen Q, Kobayashi J, Toyoda T 2007 Appl. Phys. Lett. 91 023116

    [14]

    Li L Q, Liu A P, Zhao H X, Cui C, Tang W H 2012 Acta Phys. Sin. 61 108201 (in Chinese) [李立群, 刘爱萍, 赵海新, 崔灿, 唐为华 2012 物理学报 61 108201]

    [15]

    Tian J, Gao R, Zhang Q, Zhang S, Li Y, Lan J, Qu X, Cao G 2012 J. Phys. Chem. C 116 18655

    [16]

    Hossain M A, Jennings J R, Shen C, Pan J H, Koh Z Y, Mathews N, Wang Q 2012 J. Mater. Chem. 22 16235

    [17]

    Zhou Z, Yuan S, Fan J, Hou Z, Zhou W, Du Z, Wu S 2012 Nanoscale Res. Lett. 7 652

    [18]

    Bang J H, Kamat P V 2010 Adv. Funct. Mater. 20 1970

    [19]

    Huang S, Zhang Q, Huang X, Guo X, Deng M, Li D, Luo Y, Shen Q, Toyoda T, Meng Q 2010 Nanotechnology 21 375201

    [20]

    Gao X F, Li H B, Sun W T, Chen Q, Tang F Q, Peng L M 2009 J. Phys. Chem. C 113 7531

    [21]

    Li G S, Zhang D Q, Yu J C 2009 Environ. Sci. Technol. 43 7079

    [22]

    Zhou Z J, Fan J Q, Wang X, Sun W Z, Zhou W H, Du Z L, Wu S X 2011 ACS Appl. Mater. Interfaces 3 2189

    [23]

    Shen H, Jiao X, Oron D, Li J, Lin H 2013 J. Power Sources 240 8

    [24]

    Shen X, Jia J, Lin Y, Zhou X 2015 J. Power Sources 277 215

    [25]

    Lee H, Wang M, Chen P, Gamelin D R, Zakeeruddin S M, Gratzel M, Nazeeruddin M K 2009 Nano Lett. 9 4221

    [26]

    Jumabekov A N, Siegler T D, Cordes N, Medina D D, Bhm D, Garbus P, Meroni S, Peter L M, Bein T 2014 J. Phys. Chem. C 118 25853

    [27]

    Chang C H, Lee Y L 2007 Appl. Phys. Lett. 91 053503

    [28]

    Nair P K, Nair M T S, Garcia V M, Arenas O L, Pena Y, Castillo A, Ayala I T, Gomezdaza O, Sanchez A, Campos J, Hu H, Suarez R, Rincon M E 1998 Sol. Energy Mater. Sol. Cells 52 313

    [29]

    Li W J, Zhong X H 2015 Acta Phys. Sin. 64 038806 (in Chinese) [李文杰, 钟新华 2015 物理学报 64 038806]

    [30]

    Mora-Sero I, Gimenez S, Moehl T, Fabregat-Santiago F, Lana-Villareal T, Gomez R, Bisquert J 2008 Nanotechnology 19 424007

    [31]

    Zhu G, Pan L, Xu T, Sun Z 2011 ACS Appl. Mater. Interfaces 3 3146

    [32]

    Ma X, Shen Y, Wu G, Wu Q, Pei B, Cao M, Gu F 2012 J. Alloys Compd. 538 61

    [33]

    Yu X Y, Lei B X, Kuang D B, Su C Y 2011 Chem. Sci. 2 1396

    [34]

    Song X, Wang M, Shi Y, Deng J, Yang Z, Yao X 2012 Electrochim. Acta 81 260

    [35]

    Antonelli D M, Ying J Y 1995 Angew. Chem. Int. Ed. Engl. 34 2014

    [36]

    Jing L Q, Sun X J, Xin B F, Wang B Q, Cai W M, Fu H G 2004 J. Solid State Chem. 177 3375

    [37]

    Ding I K, Ttreault N, Brillet J, Hardin B E, Smith E H, Rosenthal S J, Sauvage F, Grtzel M, McGehee M D 2009 Adv. Funct. Mater. 19 2431

    [38]

    Murase N, Gao M 2004 Mater. Lett. 58 3898

    [39]

    Liu B T, Yu H Y, Wang Y, Peng L L, Han T, Tian L L, Yan L T 2015 J. Alloys Compd. 640 246

    [40]

    Schroder D K 2002 Mater. Sci. Eng. 92 196

    [41]

    Wei X, Xie T, Xu D, Zhao Q, Pang S, Wang D 2008 Nanotechnology 19 275707

    [42]

    Nakade S, Saito Y, Kubo W, Kanzaki T, Kitamura T, Wada Y, Yanagida S 2004 J. Phys. Chem. B 108 1628

    [43]

    Kronik L, Shapira Y 1999 Surf. Sci. Rep. 37 1

    [44]

    Lowell S, Shields J E, Thomas M A, Thommes M 2004 Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density (Dordrecht: Kluwer Academic) pp20-22

    [45]

    Li K Y, Liu T, Zhou B J, Wei S L, Yang W Y 2010 Acta Phys.-Chim. Sin. 26 403 (in Chinese) [李葵英, 刘通, 周冰晶, 魏赛玲, 杨伟勇 2010 物理化学学报 26 403]

    [46]

    Li J G, Ishigaki T, Sun X D 2007 J. Phys. Chem. C 111 4969

    [47]

    Tauc J, Menth A 1972 J. Non-Cryst. Solids 8 569

    [48]

    Li K Y, Shan Q S, Zhu R P, Yin H, Lin Y Y, Wang L Q 2015 Nanoscale 7 7906

    [49]

    Duzhko V, Koch F, Dittrich T 2002 J. Appl. Phys. 91 9432

    [50]

    Zhang Q, Wang D, Wei X, Xie T, Li Z, Lin Y, Yang M 2005 Thin Solid Films 491 242

  • [1] 刘恒, 李晔, 杜梦超, 仇鹏, 何荧峰, 宋祎萌, 卫会云, 朱晓丽, 田丰, 彭铭曾, 郑新和. AlGaN合金的原子层沉积及其在量子点敏化太阳能电池的应用. 物理学报, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [2] 王娜, 马洋, 陈长松, 陈江, 伞海生, 陈继革, 成正东. 基于一维TiO2纳米管阵列薄膜的伏特效应研究. 物理学报, 2018, 67(4): 047901. doi: 10.7498/aps.67.20171903
    [3] 林莹莹, 李葵英, 单青松, 尹华, 朱瑞苹. ZnSe/ZnS/L-Cys核壳结构量子点光声与表面光伏特性. 物理学报, 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [4] 曲艳东, 孔祥清, 李晓杰, 闫鸿浩. 热处理对爆轰合成的纳米TiO2混晶的结构相变的影响. 物理学报, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [5] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 郝娟. 聚对苯乙炔MOPPV/ZnSe量子点复合材料太阳电池性能研究. 物理学报, 2013, 62(7): 078802. doi: 10.7498/aps.62.078802
    [6] 彭静, 徐智谋, 吴小峰, 孙堂友. 纳米压印技术制备表面光子晶体LED的研究. 物理学报, 2013, 62(3): 036104. doi: 10.7498/aps.62.036104
    [7] 蒋礼林, 宋云飞, 刘伟龙, 于国洋, 何兴, 王阳, 吴红琳, 杨延强. 5(6)羧基荧光素敏化TiO2纳米粒子的光致电子转移的荧光特性研究. 物理学报, 2012, 61(9): 090505. doi: 10.7498/aps.61.090505
    [8] 姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德. 基于GaAs/InAs-GaAs/ZnSe量子点太阳电池结构的优化. 物理学报, 2012, 61(13): 138801. doi: 10.7498/aps.61.138801
    [9] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [10] 哈日巴拉, 师兰, 姜磊, 郭金毓, 原光瑜, 王李波, 刘宗瑞. 纳米TiO2叶片状阵列电极的制备及其在染料敏化太阳电池中电子的输运性能. 物理学报, 2011, 60(8): 088101. doi: 10.7498/aps.60.088101
    [11] 胡林华, 戴俊, 刘伟庆, 王孔嘉, 戴松元. 锐钛矿相纳米TiO2晶体生长动力学及生长过程控制. 物理学报, 2009, 58(2): 1115-1119. doi: 10.7498/aps.58.1115
    [12] 张 苑, 赵 颖, 蔡 宁, 熊绍珍. 锐钛矿相TiO2纳米管的制备及其染料敏化太阳电池. 物理学报, 2008, 57(9): 5806-5809. doi: 10.7498/aps.57.5806
    [13] 戴 俊, 胡林华, 刘伟庆, 戴松元. 纳米TiO2多孔薄膜电极平带电势的研究. 物理学报, 2008, 57(8): 5310-5315. doi: 10.7498/aps.57.5310
    [14] 王防震, 陈张海, 柳 毅, 黄少华, 柏利慧, 沈学础. CdSe/ZnSe超薄层中两类量子岛(点)之间的激子转移和它们的光学性质研究. 物理学报, 2005, 54(1): 434-438. doi: 10.7498/aps.54.434
    [15] 胡林华, 戴松元, 王孔嘉. 纳米TiO2多孔膜的微结构对染料敏化纳米薄膜太阳电池性能的影响. 物理学报, 2005, 54(4): 1914-1918. doi: 10.7498/aps.54.1914
    [16] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [17] 李 鑫, 王晓伟, 李雪飞, 乔 峰, 梅嘉欣, 李 伟, 徐 骏, 黄信凡, 陈坤基. 绝缘衬底上高密度均匀纳米硅量子点的形成与表面形貌. 物理学报, 2004, 53(12): 4293-4298. doi: 10.7498/aps.53.4293
    [18] 胡林华, 戴松元, 王孔嘉. 溶胶-凝胶法制备的纳米TiO2结构相变及晶体生长动力学. 物理学报, 2003, 52(9): 2135-2139. doi: 10.7498/aps.52.2135
    [19] 卢励吾, 王占国, C.L.Yang, J.Wang, Z.H.Ma, I.K.Sou, WeikunGe. 分子束外延生长ZnSe自组织量子点光、电行为研究. 物理学报, 2002, 51(2): 310-314. doi: 10.7498/aps.51.310
    [20] 邹炳锁, 林金谷, 汪力, 徐积仁, 赵家龙. 表面包覆TiO2纳米微粒的结构表征、电子态与性质. 物理学报, 1996, 45(7): 1239-1243. doi: 10.7498/aps.45.1239
计量
  • 文章访问数:  4719
  • PDF下载量:  368
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-21
  • 修回日期:  2016-12-24
  • 刊出日期:  2017-03-05

/

返回文章
返回