搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁力滤波与快速反射镜光学补偿在潜航器光轴稳定控制中的应用

刘宗凯 薄煜明 王军 崔珂

引用本文:
Citation:

电磁力滤波与快速反射镜光学补偿在潜航器光轴稳定控制中的应用

刘宗凯, 薄煜明, 王军, 崔珂

Lorentz force filtering and fast steering mirror optical compensation in optical axis stability control for photoelectric mast

Liu Zong-Kai, Bo Yu-Ming, Wang Jun, Cui Ke
PDF
导出引用
  • 搭载在潜航器上的光电桅杆是光电跟瞄的重要装置. 当潜航器在水下高速行进时,海水会在物体表面形成脱体边界层和涡街,涡街的生成和脱体会引起阻力和升力的大幅度波动,从而对光轴稳定性产生极大的扰动. 本文首先基于电磁场和流体力学的基本控制方程,通过层次结构网格下的有限体积法探讨了电磁流体表面控制对潜航器绕流流场的影响和消涡减振效果;其次,分析并获得了快速反射镜(fast steering mirror,FSM)的结构特性、传递函数和PID控制策略;最后,以潜航器光路模型为研究背景,结合电磁流体的滤波特性和FSM的传递函数,论证了复合控制对潜载光电跟瞄系统稳定性提高的效果. 结果表明,壁面流向电磁力能很好地调控潜航器绕流边界层,抑制涡激振动、减少光学系统的输入噪声,在此基础上通过FSM实现二次补偿,可以进一步提高光学系统跟踪的精度. 本研究是电磁流体控制在光电领域的探索,也是对传统流体力学实验方法的拓展,因此具有一定的科学意义和实用价值.
    The photoelectric mast equipped on the underwater vehicle is the key equipment for photoelectric tracking. While the vehicle moves under water, especially, at high speed, more complex vortexes are generated at the surface, which will give rise to great disturbance to the stability of optical axis. In this paper, firstly, based on the basic control equations of electromagnetic field and fluid mechanics, the effects of the Lorentz force on flow field structure and vortex induced vibration are numerical simulated with using the finite volume method with hierarchy grids. Secondly, the structural characteristics, transfer functions and PID control strategies of fast steering mirror (FSM) are analyzed. Finally, combining the transfer function of FSM and the force characteristics, the effect of the composite control on the stability of submarine photoelectric tracking system is discussed by MATLAB. The results show that the Lorentz force can adjust the boundary layer and suppress vortex induced vibration, based on which the FSM can be used to further improve the accuracy of the optical tracking system. This research offers a new exploration in the field of electromagnetic fluid control, as well as a novel development of the traditional research direction of fluid mechanics. Therefore it appears to have a certain scientific significance and practical value.
      通信作者: 薄煜明, byming@mail.njust.edu.cn
    • 基金项目: 中国博士后基金(批准号:2015M571756)、江苏省博士后基金(批准号:1401123C)、江苏省自然科学青年基金(批准号:BK20140792)、南京理工大学自主科研基金(批准号:30915011336) 和上海航天创新基金资助的课题.
      Corresponding author: Bo Yu-Ming, byming@mail.njust.edu.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2015M571756), the Jiangsu Postdoctoral Sustentation Fund, China (Grant No. 1401123C), the Jiangsu Youth Fund of Natural Science, China (Grant No. BK20140792), the Nanjing University of Science and Technology Independent Scientific Research Funds, China (Grant No. 30915011336), and the Shanghai Aerospace Innovation Fund, China.
    [1]

    Alin N, Fureby C, Svennberg S U, Sandberg W C, Ramamurti R, Bensow R E 2007 45th AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV.: American Institute of Aeronautics and Atronautics) p1454

    [2]

    Alin N, Bensow R E, Fureby C, Huuva T, Svennberg U 2010 J. Ship Res. 54 184

    [3]

    Kim S E, Rhee B J, Miller R W 2013 Int. Shipbuilding Prog. 60 207

    [4]

    Jimenez J M, Hultmark M, Smits A J 2010 J. Fluid Mech. 659 516

    [5]

    Jimenez J M, Smits A J 2011 J. Fluids Eng. 133 034501

    [6]

    Liu Z K, Zhou B M, Liu H X, Liu Z G, Huang Y F 2011 Acta Phys. Sin. 60 084701 (in Chinese) [刘宗凯, 周本谋, 刘会星, 刘志刚, 黄翼飞 2011 物理学报 60 084701]

    [7]

    Chen Y H, Fan B C, Chen Z H, Li H Z 2009 Sci. China Ser. G 52 1364

    [8]

    Shatrov V, Gerbeth G 2007 Phys. Fluids 19 035109

    [9]

    Liu Z K, Gu J L, Zhou B M, Ji Y L, Huang Y D, Xu C 2014 Acta Phys. Sin. 63 074704 (in Chinese) [刘宗凯, 顾金良, 周本谋, 纪延亮, 黄亚冬, 徐驰 2014 物理学报 63 074704]

    [10]

    Hei M, Lu Y F, Zhang Z Y, Zhi Y, Fan D P, Xia N Z 2013 Opt. Precis. Eng. 2 1

    [11]

    Deng C, Mao Y, Ren G 2016 J. Sensors 16 1920

    [12]

    Popinet S 2009 J. Comput. Phys. 228 5838

    [13]

    Popinet S, Rickard G 2007 Ocean Model. 16 224

    [14]

    Popinet S 2003 J. Comput. Phys. 190 572

    [15]

    Liu H X, Zhou B M, Liu Z K, Ji Y L 2012 P. I. Mech. Eng. G-J. Aerosp. Eng. 0954410011433120

    [16]

    strm K J, Wittenmark B 2013 Computer-Controlled Systems: Theory and Design Courier Corporation 3rd (Lund: Dover Publications) p163

    [17]

    Valrio D, Tejado I 2015 Signal Process. 107 254

  • [1]

    Alin N, Fureby C, Svennberg S U, Sandberg W C, Ramamurti R, Bensow R E 2007 45th AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV.: American Institute of Aeronautics and Atronautics) p1454

    [2]

    Alin N, Bensow R E, Fureby C, Huuva T, Svennberg U 2010 J. Ship Res. 54 184

    [3]

    Kim S E, Rhee B J, Miller R W 2013 Int. Shipbuilding Prog. 60 207

    [4]

    Jimenez J M, Hultmark M, Smits A J 2010 J. Fluid Mech. 659 516

    [5]

    Jimenez J M, Smits A J 2011 J. Fluids Eng. 133 034501

    [6]

    Liu Z K, Zhou B M, Liu H X, Liu Z G, Huang Y F 2011 Acta Phys. Sin. 60 084701 (in Chinese) [刘宗凯, 周本谋, 刘会星, 刘志刚, 黄翼飞 2011 物理学报 60 084701]

    [7]

    Chen Y H, Fan B C, Chen Z H, Li H Z 2009 Sci. China Ser. G 52 1364

    [8]

    Shatrov V, Gerbeth G 2007 Phys. Fluids 19 035109

    [9]

    Liu Z K, Gu J L, Zhou B M, Ji Y L, Huang Y D, Xu C 2014 Acta Phys. Sin. 63 074704 (in Chinese) [刘宗凯, 顾金良, 周本谋, 纪延亮, 黄亚冬, 徐驰 2014 物理学报 63 074704]

    [10]

    Hei M, Lu Y F, Zhang Z Y, Zhi Y, Fan D P, Xia N Z 2013 Opt. Precis. Eng. 2 1

    [11]

    Deng C, Mao Y, Ren G 2016 J. Sensors 16 1920

    [12]

    Popinet S 2009 J. Comput. Phys. 228 5838

    [13]

    Popinet S, Rickard G 2007 Ocean Model. 16 224

    [14]

    Popinet S 2003 J. Comput. Phys. 190 572

    [15]

    Liu H X, Zhou B M, Liu Z K, Ji Y L 2012 P. I. Mech. Eng. G-J. Aerosp. Eng. 0954410011433120

    [16]

    strm K J, Wittenmark B 2013 Computer-Controlled Systems: Theory and Design Courier Corporation 3rd (Lund: Dover Publications) p163

    [17]

    Valrio D, Tejado I 2015 Signal Process. 107 254

  • [1] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性. 物理学报, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [2] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理. 物理学报, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [3] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响. 物理学报, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [4] 江昱佼, 高亦谈, 黄沛, 赵昆, 许思源, 朱江峰, 方少波, 滕浩, 侯洵, 魏志义. 快速傅里叶变换在阿秒束线光路稳定控制中的应用. 物理学报, 2019, 68(21): 214204. doi: 10.7498/aps.68.20191164
    [5] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [6] 刘梦珂, 张辉, 范宝春, 韩洋, 归明月. 电磁控制两自由度涡生振荡的机理研究. 物理学报, 2016, 65(24): 244702. doi: 10.7498/aps.65.244702
    [7] 刘宗凯, 顾金良, 周本谋, 纪延亮, 黄亚冬, 徐驰. 基于回转体型艇身的电磁流体表面推进与矢量控制特性研究. 物理学报, 2014, 63(7): 074704. doi: 10.7498/aps.63.074704
    [8] 吕金光, 梁静秋, 梁中翥. 多级反射镜阵列Monte Carlo法误差合成与统计分析. 物理学报, 2012, 61(22): 220701. doi: 10.7498/aps.61.220701
    [9] 关庆丰, 吕鹏, 王孝东, 万明珍, 顾倩倩, 陈波. 质子辐照下Mo/Si多层膜反射镜的微观结构状态. 物理学报, 2012, 61(1): 016107. doi: 10.7498/aps.61.016107
    [10] 安红海, 王琛, 方智恒, 熊俊, 孙今人, 王伟, 傅思祖, 乔秀梅, 郑无敌, 张国平. 反射镜双程放大对类氖锗软X射线激光的输出影响研究. 物理学报, 2011, 60(10): 104207. doi: 10.7498/aps.60.104207
    [11] 赵艳影, 杨如铭. 利用时滞反馈控制自参数振动系统饱和控制减振频带. 物理学报, 2011, 60(10): 104304. doi: 10.7498/aps.60.104304.2
    [12] 王波, 梁中翥, 孔延梅, 梁静秋, 付建国, 郑莹, 朱万彬, 吕金光, 王维彪, 裴舒, 张军. 用于微型光谱仪的硅基多级微反射镜设计与制作研究. 物理学报, 2010, 59(2): 907-912. doi: 10.7498/aps.59.907
    [13] 胡昕, 张继彦, 杨国洪, 刘慎业, 丁永坤. 基于布拉格反射镜的X射线多色单能成像谱仪. 物理学报, 2009, 58(9): 6397-6402. doi: 10.7498/aps.58.6397
    [14] 吴忠强, 邝钰. 多涡卷混沌系统的广义同步控制. 物理学报, 2009, 58(10): 6823-6827. doi: 10.7498/aps.58.6823
    [15] 李 铭, 张 彬, 戴亚平, 王 韬, 范正修, 黄 伟. 用于钕玻璃啁啾脉冲放大系统光谱整形的多层介质膜反射镜. 物理学报, 2008, 57(8): 4898-4903. doi: 10.7498/aps.57.4898
    [16] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发. 物理学报, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [17] 冯素娟, 尚 亮, 毛庆和. 利用偏振控制器连续调节光纤环镜的反射率. 物理学报, 2007, 56(8): 4677-4685. doi: 10.7498/aps.56.4677
    [18] 魏 强, 刘 海, 何世禹, 郝小鹏, 魏 龙. 质子辐照铝膜反射镜的慢正电子湮没研究. 物理学报, 2006, 55(10): 5525-5530. doi: 10.7498/aps.55.5525
    [19] 马伟增, 季诚昌, 李建国. 直流磁场控制电磁悬浮熔炼旋转稳定性的理论分析. 物理学报, 2002, 51(10): 2233-2238. doi: 10.7498/aps.51.2233
    [20] 张幼文. 45°扫描反射镜的静平衡和动平衡设计. 物理学报, 1979, 28(2): 183-200. doi: 10.7498/aps.28.183
计量
  • 文章访问数:  5046
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-20
  • 修回日期:  2017-01-19
  • 刊出日期:  2017-04-05

/

返回文章
返回