搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光诱导氮气等离子体时间分辨光谱研究及温度和电子密度测量

杨文斌 周江宁 李斌成 邢廷文

引用本文:
Citation:

激光诱导氮气等离子体时间分辨光谱研究及温度和电子密度测量

杨文斌, 周江宁, 李斌成, 邢廷文

Time-resolved spectra and measurements of temperature and electron density of laser induced nitrogen plasma

Yang Wen-Bin, Zhou Jiang-Ning, Li Bin-Cheng, Xing Ting-Wen
PDF
导出引用
  • 激光诱导击穿光谱(LIBS)作为一种重要的分析手段被广泛应用于材料分析、环境监测等领域.特别是随着大气污染问题的日趋严重,基于LIBS的大气污染在线监测分析技术快速发展,氮气等离子体特性的时间演化规律对研究激光诱导大气等离子体动力学和发展大气污染监测的LIBS技术具有重要意义.而温度和电子数密度作为表征等离子体状态最重要的参数,直接影响着等离子体形成、膨胀和退化中的动力学过程以及等离子体中的能量传输效率.本文利用等离子体时间分辨光谱,研究了连续背景辐射、分子谱线强度及信背比(分子谱线与连续背景辐射的比值)在等离子体演化过程中的变化规律,结果显示连续背景辐射寿命在700 ns左右,N2+(B2u+-X2g+,v:0-0)跃迁谱线强度在1215 s范围内达到最大值,信背比随时间呈现上升、稳定的趋势,因此利用N2+分子离子第一负带系(B2u+-X2g+)研究等离子体温度的观测窗口应选择在1025 s之间;基于双原子光谱理论,通过拟合实测光谱和仿真光谱研究了大气压下激光诱导氮气等离子体温度随时间的演化趋势,由于辐射损耗远小于碰撞作用,在1028 s内等离子体温度从约10000 K按指数衰减到约6000 K;在准确测定仪器展宽线型的基础上,利用Nelder-Mead单纯形算法,研究了N原子746.831 nm谱线的Stark展宽和位移随时间的演化趋势,计算了等离子体中电子数密度随时间在10171016 cm-3量级间衰减,通过分析发现造成等离子体中电子数衰减的主要机理是三体碰撞复合.
    As an important analytical tool, laser-induced breakdown spectroscopy (LIBS) has been widely used in material analysis, environmental monitoring, and other fields. In recent years, due to increasingly serious air pollution, various LIBS-based on-line air pollution detection techniques are being developed. The temporal evolution of nitrogen plasma characteristics is of great importance for investigating the atmospheric plasma dynamics and developing the LIBS-based air pollution monitoring techniques. Temperature and electron density, which are the most important parameters of a plasma state, directly influence the kinetic behaviors of plasma formation, expansion and degradation processes, as well as the energy transfer efficiency in plasma. In this paper, the temporal evolutions of continuous background radiation, molecular spectral strength, and signal-to-background ratio (SBR) are studied based on time-resolved spectra. The results show that the lifetime of the continuous background radiation is about 700 ns, the N2+(B2u+-X2g+, v: 0-0) transition line strength reaches a maximum value within 12-15 s, the SBR first increases and then stabilizes. Accordingly, the optimal observation period for N2+(B2u+-X2g+) band system based plasma temperature investigation should be selected to be between 10 and 25 s. The temporal evolution of plasma temperature is determined by fitting experimental spectra to theoretical ones simulated by LIFBASE (a spectral simulation program). As the radiation loss is less than the loss due to the collision cooling, the plasma temperature decays exponentially from ~10000 K to ~6000 K within 10-28 s. By taking into account the instrumental broadening lineshape (Voigt lineshape), the temporal evolutions of Stark broadening and Stark shift of N 746.831 nm atomic line are obtained via Nelder-Mead simplex algorithm, and then the electron density is calculated accordingly. The results show that the electron density decays between 1017 and 1016 cm-3 in magnitude. By comparing the experimental electron decay rate with theoretical values calculated from different mechanisms, it is concluded that a three-body collision recombination is the main mechanism of electron decay.
      通信作者: 李斌成, bcli@uestc.edu.cn
      Corresponding author: Li Bin-Cheng, bcli@uestc.edu.cn
    [1]

    Cremers D A, Radziemski L J 2006 Handbook of Laser-Induced Breakdown Spectroscopy (Chichester: John Wiley Sons Ltd) p3

    [2]

    Samek O, Beddows D C S, Kaiser J, Kukhlevsky S V, Lika M, Telle H H, Young J 2000 Opt. Eng. 39 2248

    [3]

    Ayyalasomayajula K K, Fang Y Y, Singh J P, McIntyre D L, Jain J 2012 Appl. Opt. 51 149

    [4]

    Tran M, Smith B W, Hahn D W, Winefordner J D 2001 Appl. Spectrosc. 55 1455

    [5]

    Pichahchy A E, Cremers D A, Ferris M J 1997 Spectrochim. Acta B 52 25

    [6]

    Sturm V, Noll R 2003 Appl. Opt. 42 6221

    [7]

    Huddlestone R H, Leondard S L 1965 Plasma Diagnostic Techniques (New York: Academic Press) p87

    [8]

    Lenk A, Witke T, Granse G 1996 Appl. Surf. Sci. 96 195

    [9]

    Alam R C, Fletcher S J, Wasserman K R, Hwel L 1990 Phys. Rev. A 42 383

    [10]

    Martin F, Mawassi R, Vidal F, Gallimberti I, Comtois D, Ppin H, Kieffer J C, Mercure H P 2002 Appl. Sepctrosc. 56 1444

    [11]

    Liu Y F, Ding Y J, Peng Z M, Huang Y, Du Y J 2014 Acta Phys. Sin. 63 205205 (in Chinese) [刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君 2014 物理学报 63 205205]

    [12]

    LIFBASE: Database and Spectral Simulation Program Luque J, Crosley D R https://www.sri.com/engage/products-solutions/lifbase [2017-1-19]

    [13]

    Sarrette J P, Gomes A M, Bacri J, Laux C O, Kruger C H 1995 J. Quant. Spectrosc. Ra. 53 125

    [14]

    Babou Y, Rivire P, Perrin M Y, Soufiani A 2009 J. Quant. Spectrosc. Ra. 110 89

    [15]

    Flagan R C, Appleton J P 1972 J. Chem. Phys. 56 1163

    [16]

    Zhai X D, Ding Y J, Peng Z M, Luo R 2012 Acta Phys. Sin. 61 123301 (in Chinese) [翟晓东, 丁艳军, 彭志敏, 罗锐 2012 物理学报 61 123301]

    [17]

    Staack D, Farouk B, Gutsol A F, Fridman A A 2006 Plasma Sources Sci. Technol. 15 818

    [18]

    Laux C O 1993 Ph. D. Dissertation (Stanford: Stanford University)

    [19]

    Gleizes A, Gonzalez J J, Liani B, Raynal G 1993 J. Phys. D 26 1921

    [20]

    Laux C O, Spence T G, Kruger C H, Zare R N 2003 Plasma Sources Sci. Technol. 12 125

    [21]

    Cremers D A, Radziemski L J 2006 Handbook of Laser-Induced Breakdown Spectroscopy (England: John Wiley Sons) p28

    [22]

    Nelder J A, Mead R 1965 Comput. J. 7 308

    [23]

    Ida T, Ando M, Toraya H 2000 J. Appl. Crystallogr. 33 1311

    [24]

    Griem H R 1974 Spectral Line Broadeningby Plasmas (New York: Academic Press) p333

    [25]

    Soubacq S, Pignolet P, Schall E, Batina J 2004 J. Phys. D 37 2686

    [26]

    Zhao X M, Diels J C, Wang C Y, Elizondo J M 1995 IEEE J. Quantum Elect. 31 599

    [27]

    Bourdon A, Teresiak Y, Vervisch P 1998 Rhys. Rev. E 57 4684

  • [1]

    Cremers D A, Radziemski L J 2006 Handbook of Laser-Induced Breakdown Spectroscopy (Chichester: John Wiley Sons Ltd) p3

    [2]

    Samek O, Beddows D C S, Kaiser J, Kukhlevsky S V, Lika M, Telle H H, Young J 2000 Opt. Eng. 39 2248

    [3]

    Ayyalasomayajula K K, Fang Y Y, Singh J P, McIntyre D L, Jain J 2012 Appl. Opt. 51 149

    [4]

    Tran M, Smith B W, Hahn D W, Winefordner J D 2001 Appl. Spectrosc. 55 1455

    [5]

    Pichahchy A E, Cremers D A, Ferris M J 1997 Spectrochim. Acta B 52 25

    [6]

    Sturm V, Noll R 2003 Appl. Opt. 42 6221

    [7]

    Huddlestone R H, Leondard S L 1965 Plasma Diagnostic Techniques (New York: Academic Press) p87

    [8]

    Lenk A, Witke T, Granse G 1996 Appl. Surf. Sci. 96 195

    [9]

    Alam R C, Fletcher S J, Wasserman K R, Hwel L 1990 Phys. Rev. A 42 383

    [10]

    Martin F, Mawassi R, Vidal F, Gallimberti I, Comtois D, Ppin H, Kieffer J C, Mercure H P 2002 Appl. Sepctrosc. 56 1444

    [11]

    Liu Y F, Ding Y J, Peng Z M, Huang Y, Du Y J 2014 Acta Phys. Sin. 63 205205 (in Chinese) [刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君 2014 物理学报 63 205205]

    [12]

    LIFBASE: Database and Spectral Simulation Program Luque J, Crosley D R https://www.sri.com/engage/products-solutions/lifbase [2017-1-19]

    [13]

    Sarrette J P, Gomes A M, Bacri J, Laux C O, Kruger C H 1995 J. Quant. Spectrosc. Ra. 53 125

    [14]

    Babou Y, Rivire P, Perrin M Y, Soufiani A 2009 J. Quant. Spectrosc. Ra. 110 89

    [15]

    Flagan R C, Appleton J P 1972 J. Chem. Phys. 56 1163

    [16]

    Zhai X D, Ding Y J, Peng Z M, Luo R 2012 Acta Phys. Sin. 61 123301 (in Chinese) [翟晓东, 丁艳军, 彭志敏, 罗锐 2012 物理学报 61 123301]

    [17]

    Staack D, Farouk B, Gutsol A F, Fridman A A 2006 Plasma Sources Sci. Technol. 15 818

    [18]

    Laux C O 1993 Ph. D. Dissertation (Stanford: Stanford University)

    [19]

    Gleizes A, Gonzalez J J, Liani B, Raynal G 1993 J. Phys. D 26 1921

    [20]

    Laux C O, Spence T G, Kruger C H, Zare R N 2003 Plasma Sources Sci. Technol. 12 125

    [21]

    Cremers D A, Radziemski L J 2006 Handbook of Laser-Induced Breakdown Spectroscopy (England: John Wiley Sons) p28

    [22]

    Nelder J A, Mead R 1965 Comput. J. 7 308

    [23]

    Ida T, Ando M, Toraya H 2000 J. Appl. Crystallogr. 33 1311

    [24]

    Griem H R 1974 Spectral Line Broadeningby Plasmas (New York: Academic Press) p333

    [25]

    Soubacq S, Pignolet P, Schall E, Batina J 2004 J. Phys. D 37 2686

    [26]

    Zhao X M, Diels J C, Wang C Y, Elizondo J M 1995 IEEE J. Quantum Elect. 31 599

    [27]

    Bourdon A, Teresiak Y, Vervisch P 1998 Rhys. Rev. E 57 4684

  • [1] 侯佳佳, 张大成, 冯中琦, 朱江峰. 基于温度迭代校正自吸收效应的激光诱导击穿光谱定量分析方法. 物理学报, 2024, 73(5): 054205. doi: 10.7498/aps.73.20231541
    [2] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器. 物理学报, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [3] 戴宇佳, 李明亮, 宋超, 高勋, 郝作强, 林景全. 空间约束结合梯度下降法提高铝合金中Fe成分激光诱导击穿光谱技术检测精度. 物理学报, 2021, 70(20): 205204. doi: 10.7498/aps.70.20210792
    [4] 李杭, 陈萍, 田进寿. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210871
    [5] 王倩, 赵江山, 范元媛, 郭馨, 周翊. 不同缓冲气体中ArF准分子激光系统放电特性分析. 物理学报, 2020, 69(17): 174207. doi: 10.7498/aps.69.20200087
    [6] 杨雪, 李苏宇, 姜远飞, 陈安民, 金明星. 不同样品温度下聚焦透镜到样品表面距离对激光诱导铜击穿光谱的影响. 物理学报, 2019, 68(6): 065201. doi: 10.7498/aps.68.20182198
    [7] 赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂. 基于自吸收量化的激光诱导等离子体表征方法. 物理学报, 2018, 67(16): 165201. doi: 10.7498/aps.67.20180374
    [8] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度. 物理学报, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [9] 刘玉峰, 张连水, 和万霖, 黄宇, 杜艳君, 蓝丽娟, 丁艳军, 彭志敏. 激光诱导击穿火焰等离子体光谱研究. 物理学报, 2015, 64(4): 045202. doi: 10.7498/aps.64.045202
    [10] 张颖, 张大成, 马新文, 潘冬, 赵冬梅. 基于激光诱导击穿光谱技术定量分析食用明胶中的铬元素. 物理学报, 2014, 63(14): 145202. doi: 10.7498/aps.63.145202
    [11] 陈添兵, 姚明印, 刘木华, 林永增, 黎文兵, 郑美兰, 周华茂. 基于多元定标法的脐橙Pb元素激光诱导击穿光谱定量分析. 物理学报, 2014, 63(10): 104213. doi: 10.7498/aps.63.104213
    [12] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究. 物理学报, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [13] 王春龙, 刘建国, 赵南京, 马明俊, 王寅, 胡丽, 张大海, 余洋, 孟德硕, 章炜, 刘晶, 张玉钧, 刘文清. 水体重金属激光诱导击穿光谱定量分析方法对比研究. 物理学报, 2013, 62(12): 125201. doi: 10.7498/aps.62.125201
    [14] 鲁翠萍, 刘文清, 赵南京, 刘立拓, 陈东, 张玉钧, 刘建国. 土壤重金属铬元素的激光诱导击穿光谱定量分析研究. 物理学报, 2011, 60(4): 045206. doi: 10.7498/aps.60.045206
    [15] 孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文. 基于激光诱导击穿光谱技术的铝合金成分定量分析. 物理学报, 2010, 59(7): 4571-4576. doi: 10.7498/aps.59.4571
    [16] 于凌尧, 尹君, 万辉, 刘星, 屈军乐, 牛憨笨, 林子扬. 基于超连续光谱激发的时间分辨相干反斯托克斯拉曼散射方法与实验研究. 物理学报, 2010, 59(8): 5406-5411. doi: 10.7498/aps.59.5406
    [17] 梁文锡, 朱鹏飞, 王瑄, 聂守华, 张忠超, 曹建明, 盛政明, 张杰. 超快电子衍射系统的时间空间分辨能力研究及其优化. 物理学报, 2009, 58(8): 5539-5545. doi: 10.7498/aps.58.5539
    [18] 张大成, 马新文, 朱小龙, 李 斌, 祖凯玲. 激光诱导击穿光谱应用于三种水果样品微量元素的分析. 物理学报, 2008, 57(10): 6348-6353. doi: 10.7498/aps.57.6348
    [19] 吴文智, 闫玉禧, 郑植仁, 金钦汉, 刘伟龙, 张建平, 杨延强, 苏文辉. 水溶性CdTe量子点的稳态和纳秒时间分辨光致发光光谱. 物理学报, 2007, 56(5): 2926-2930. doi: 10.7498/aps.56.2926
    [20] 朱建敏, 沈文忠. 步进扫描时间分辨光谱及其在太阳电池光电导上的应用. 物理学报, 2004, 53(11): 3716-3723. doi: 10.7498/aps.53.3716
计量
  • 文章访问数:  6321
  • PDF下载量:  469
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-03
  • 修回日期:  2017-01-03
  • 刊出日期:  2017-05-05

/

返回文章
返回