搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究

俎凤霞 张盼盼 熊伦 殷勇 刘敏敏 高国营

引用本文:
Citation:

以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究

俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营

Design and electronic transport properties of organic thiophene molecular rectifier with the graphene electrodes

Zu Feng-Xia, Zhang Pan-Pan, Xiong Lun, Yin Yong, Liu Min-Min, Gao Guo-Ying
PDF
导出引用
  • 传统硅基半导体器件受到了量子尺寸效应的限制,发展分子电子学器件有可能解决这一难题.本文提出了由石墨烯电极和有机噻吩分子相结合构造分子器件的思想,建构了石墨烯-噻吩分子-石墨烯结构的分子器件,并运用非平衡态格林函数结合密度泛函理论的方法研究了其电输运特性.系统地分析了电子给体氨基和电子受体硝基两种取代基的位置对有机噻吩分子电输运的影响.计算表明,有机噻吩二聚物被氨基和硝基取代后会产生明显的负微分电阻效应和整流效应.进一步对产生这些效应的物理机制进行分析,发现氨基的位置可以调整负微分电阻的强弱,硝基的位置可以改变整流的方向.
    Molecular electronics offers new possibilities for continually miniaturizing the electronic devices beyond the limits of standard silicon-based technologies. There have been significant experimental and theoretical efforts to build thiophene molecular junctions and study their quantum transport properties. However, in most of these studies Au is used as lead material. It is well known that the fabrication of the traditional molecular device is now hindered by technological difficulties such as the oxidation of metallic contacts, and the interface instability between the organic molecule and the inorganic metallic electrodes. In this paper, we use the graphene electrodes to construct a series of thiophene-based devices. The graphene electrodes proposed in this paper are able to avoid such problems. Moreover, the stability of graphene electrodes at room temperature paves the way to studying the electron transport through a single molecule under the ambient conditions. Firstly, we design a series of molecular rectifying devices based on thiophene dimer and its derivatives, in which the hydrogen atom on the thiophene monomer is substituted with a representative electron-donating group (NH2) and electron-withdrawing group (NO2). Secondly, we investigate systematically the electronic transport properties through these molecular junctions by performing the first principles calculations based on density functional theory and nonequilibrium Green's function. The calculated results show that these thiophene molecular devices substituted with NH2 and NO2 possess the rectifying behavior and negative differential resistance properties. Furthermore, we also find that the position of substituent group NH2 or NO2 has a major influence on the electronic transport properties. In order to explore the physical mechanism behind these transport properties, the electronic structures of the molecules, the transmission spectrum, and the molecular projected eigenstates are analyzed. The results reveal that the position of NH2 can adjust the intensity of the negative differential resistance. When the NH2 group is close to the molecular end, the negative differential resistance behavior in this molecular device is more prominent than in other molecules. In addition, the position of NO2 can change the direction of the rectification. When the NO2 group is close to the molecular end, the current in negative bias is larger than in positive bias, resulting in a negative rectification. In contrast, when the NO2 group is close to the molecular centre, a positive rectification occurs. Our results can provide a worthy complement to thiophene molecular experiment, and also has a guiding significance for designing other molecular electronic devices.
      通信作者: 熊伦, 13971624916@163.com
    • 基金项目: 湖北省教育厅科学研究计划(批准号:Q20151510)和武汉工程大学科学研究基金(批准号:K201477)资助的课题.
      Corresponding author: Xiong Lun, 13971624916@163.com
    • Funds: Project supported by the Scientific Research Foundation of Education Bureau of Hubei Province, China (Grant No. Q20151510) and the Scientific Research Foundation of Wuhan Institute of Technology, China (Grant No. K201477).
    [1]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252

    [2]

    Seminario J M, Zacarias A G, Tour J M 1999 J. Am. Chem. Soc. 121 411

    [3]

    Zu F X, Liu Z L, Yao K L, Gao G Y, Fu H H, Zhu S C, Ni Y, Peng L 2014 Sci. Rep. 4 4838

    [4]

    Jalili S, Rafii-Tabar H 2005 Phys. Rev. B 71 165410

    [5]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277

    [6]

    Taylor J, Brandbyge M, Stokbro K 2002 Phys. Rev. Lett. 89 138301

    [7]

    Wang B, Zhou Y S, Ding X L 2006 J. Phys. Chem. B 110 24505

    [8]

    Tongay S, Lemaitre M, Miao X, Gila B, Appleton, B R, Hebard A F 2012 Phys. Rev. X 2 011002

    [9]

    Guo C L, Wang K, Zerah-Harush E, Hamill J, Wang B, Dubi Y, Xu B Q 2016 Nat. Chem. 8 484

    [10]

    Yamada R, Hiroaki K, Noutoshi T, Tanaka S, Tada H 2008 Nano Lett. 8 1237

    [11]

    Fichou D 2000 J. Mater. Chem. 10 571

    [12]

    McCreery R L, Yan H J, Bergren A J 2013 Phys. Chem. Chem. Phys. 15 1065

    [13]

    Zhitenev N B, Meng H, Bao Z 2002 Phys. Rev. Lett. 88 226801

    [14]

    Yang Y 2013 M. S. Thesis (Chengdu: Southwest Jiaotong University) (in Chinese) [杨英 2013 硕士学位论文 (成都: 西南交通大学)]

    [15]

    Zu F X, Liu Z L, Yao K L, Fu H H, Gao G Y, Yao W 2013 J. Chem. Phys. 138 154707

    [16]

    Bao Q L, Lu Z S, Li J, Loh K P, Li C M 2009 J. Phys. Chem. C 113 12530

    [17]

    Zhou Y X, Jiang F, Chen H, Note R, Mizuseki H, Kawazoe Y 2007 Phys. Rev. B 75 245407

    [18]

    Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748

    [19]

    Han M Y, zyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [20]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [21]

    Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [22]

    Soler J M, Artacho E, Gale J D, Garca A, Unquera J, Ordejn P, Snchez-Portal D 2002 J. Phys. Condens. Matter 14 2745

  • [1]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252

    [2]

    Seminario J M, Zacarias A G, Tour J M 1999 J. Am. Chem. Soc. 121 411

    [3]

    Zu F X, Liu Z L, Yao K L, Gao G Y, Fu H H, Zhu S C, Ni Y, Peng L 2014 Sci. Rep. 4 4838

    [4]

    Jalili S, Rafii-Tabar H 2005 Phys. Rev. B 71 165410

    [5]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277

    [6]

    Taylor J, Brandbyge M, Stokbro K 2002 Phys. Rev. Lett. 89 138301

    [7]

    Wang B, Zhou Y S, Ding X L 2006 J. Phys. Chem. B 110 24505

    [8]

    Tongay S, Lemaitre M, Miao X, Gila B, Appleton, B R, Hebard A F 2012 Phys. Rev. X 2 011002

    [9]

    Guo C L, Wang K, Zerah-Harush E, Hamill J, Wang B, Dubi Y, Xu B Q 2016 Nat. Chem. 8 484

    [10]

    Yamada R, Hiroaki K, Noutoshi T, Tanaka S, Tada H 2008 Nano Lett. 8 1237

    [11]

    Fichou D 2000 J. Mater. Chem. 10 571

    [12]

    McCreery R L, Yan H J, Bergren A J 2013 Phys. Chem. Chem. Phys. 15 1065

    [13]

    Zhitenev N B, Meng H, Bao Z 2002 Phys. Rev. Lett. 88 226801

    [14]

    Yang Y 2013 M. S. Thesis (Chengdu: Southwest Jiaotong University) (in Chinese) [杨英 2013 硕士学位论文 (成都: 西南交通大学)]

    [15]

    Zu F X, Liu Z L, Yao K L, Fu H H, Gao G Y, Yao W 2013 J. Chem. Phys. 138 154707

    [16]

    Bao Q L, Lu Z S, Li J, Loh K P, Li C M 2009 J. Phys. Chem. C 113 12530

    [17]

    Zhou Y X, Jiang F, Chen H, Note R, Mizuseki H, Kawazoe Y 2007 Phys. Rev. B 75 245407

    [18]

    Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748

    [19]

    Han M Y, zyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [20]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [21]

    Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [22]

    Soler J M, Artacho E, Gale J D, Garca A, Unquera J, Ordejn P, Snchez-Portal D 2002 J. Phys. Condens. Matter 14 2745

  • [1] 邢海英, 张子涵, 吴文静, 郭志英, 茹金豆. 石墨烯电极弯折对2-苯基吡啶分子器件负微分电阻特性的调控和机理. 物理学报, 2023, 72(3): 038502. doi: 10.7498/aps.72.20221212
    [2] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [3] 廖天军, 杨智敏, 林比宏. 基于电荷和热输运的石墨烯热电子器件性能优化. 物理学报, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [4] 贺艳斌, 白熙. 一维线性非共轭石墨烯基(CH2)n分子链的电子输运. 物理学报, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [5] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性. 物理学报, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [6] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理. 物理学报, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [7] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [8] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究. 物理学报, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [9] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [10] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋. 基于石墨烯电极的齐聚苯乙炔分子器件的整流特性. 物理学报, 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [11] 王孜博, 江华, 谢心澄. 多端口石墨烯系统中的非局域电阻. 物理学报, 2017, 66(21): 217201. doi: 10.7498/aps.66.217201
    [12] 程正富, 郑瑞伦. 非简谐振动对石墨烯杨氏模量与声子频率的影响. 物理学报, 2016, 65(10): 104701. doi: 10.7498/aps.65.104701
    [13] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [14] 杨晶晶, 李俊杰, 邓伟, 程骋, 黄铭. 单层石墨烯带传输模式及其对气体分子振动谱的传感特性研究. 物理学报, 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [15] 安兴涛, 刁淑萌. 门电压控制的硅烯量子线中电子输运性质. 物理学报, 2014, 63(18): 187304. doi: 10.7498/aps.63.187304
    [16] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [17] 姚志东, 李炜, 高先龙. 点缺陷扶手型石墨烯量子点的电子性质研究. 物理学报, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [18] 康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 不同极性6H-SiC表面石墨烯的制备及其电子结构的研究. 物理学报, 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
    [19] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [20] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
计量
  • 文章访问数:  4995
  • PDF下载量:  400
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-29
  • 修回日期:  2017-01-20
  • 刊出日期:  2017-05-05

/

返回文章
返回