搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微流芯片中消逝波激励的荧光辐射特性研究

储玉飞 张远宪 刘春 普小云

引用本文:
Citation:

微流芯片中消逝波激励的荧光辐射特性研究

储玉飞, 张远宪, 刘春, 普小云

Fluorescence radiation characteristics based on evanescent wave pumping in a microfluidic chip

Chu Yu-Fei, Zhang Yuan-Xian, Liu Chun, Pu Xiao-Yun
PDF
导出引用
  • 将石英裸光纤植入聚二甲基硅氧烷基片的微流道中,采用沿光纤轴向光抽运、消逝场激励染料分子的方式,在基片微流道中获得均匀的荧光辐射.实验发现,荧光辐射的强度随光纤轴向距离的增加而衰减,光纤包层溶液折射率越大,荧光沿光纤轴向的衰减越突出;包层溶液中染料浓度越大,荧光沿光纤轴向的衰减也越突出;通过选择适当的包层溶液折射率以及染料浓度可以获得沿光纤轴向接近均匀的荧光辐射.用消逝波激励荧光的辐射理论计算了荧光光强沿光纤轴向的变化,计算结果与实验符合较好.在此基础上,设计并制作了一种具有三个通道的聚二甲基硅氧烷基片,通过在三个微流道中分别注入染料浓度均为0.1 mmol的罗丹明640、 罗丹明B 及罗丹明6 G的乙醇染料溶液,采用沿光纤轴向消逝波光激励方式,在一块聚二甲基硅氧烷基片上同时实现了三个不同波段的荧光辐射.
    A bare quartz optical fiber is implanted in a microfluidic channel of polydimethylsiloxane (PDMS) substrate. Pumping the microfluid by a continuous wave laser with a wavelength of 532 nm along the fiber axis, the fluorescent spectra from the channel filled with lower refractive index (RI) dye solution are obtained. Due to the fact that the evanescent field of the pump beam is homogeneous around fiber, the fluorescent emission from the rim of fiber is uniform. It is found experimentally that the fluorescent emission intensity decreases with the axial distance of fiber, and the intensity is very sensitive to the RI of the dye solution and the dye concentration. For the dye solution with a large RI, the emitted fluorescent intensity attenuates along the fiber axis more obviously than that of the dye solution with a small RI. For the high dye concentration solution, the emitted fluorescent intensity attenuates along the fiber axis also more significantly than that of the low dye concentration solution. Therefore, it is possible to obtain a uniform fluorescence radiation along the fiber axis by selecting a suitably smaller RI and a lower dye concentration solution. The observed experimental phenomena are well explained based on the mechanism of evanescent wave pumping fluorescent radiation. Based on the features of fluorescent emission in the microfluidic chip, a PDMS chip with three micro-channels is designed and fabricated. After injecting ethanol solutions of rhodamine 640, rhodamine B and rhodamine 6 G separately into the three channels and pumpingthese solutions by evanescent wave along the optical fiber axis, three fluorescence emissions with different wavelength ranges are successfully observed in a single PDMS chip.
      通信作者: 普小云, xypu@163.com
    • 基金项目: 国家自然科学基金(批准号:11404282,61465014)、中国科学院西部之光人才培养项目和云南大学中青年骨干教师培养项目资助的课题.
      Corresponding author: Pu Xiao-Yun, xypu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404282, 61465014), the Chinese Academy of Sciences “Light of West China” Program, and the Young Backbone Teachers Training Program of Yunnan University, China.
    [1]

    Thorsen T, Maerkl S J, Quake S R 2002 Science 298 580

    [2]

    Liu K K, Wu R G, Chuang Y J, Khoo H S, Huang S H, Tseng F G 2010 Sensors 10 6623

    [3]

    Manz A, Graber N, Widmer H 1990 Sensors and Actuators B: Chemical 1 244

    [4]

    Psaltis D, Quake S R, Yang C 2006 Nature 442 27

    [5]

    Helbo B, Kristensen A, Menon A 2003 J. Micromech. Microengin. 13 2

    [6]

    Monat C, Domachuk P, Eggleton P B 2007 Nat. Photon. 1 106

    [7]

    Chen Y C, Chen Q S, Fan X 2016 Lab on Chip 16 2228

    [8]

    Gilardi G, Beccherelli R 2013 J. Phys. D: Appl. Phys. 46 105104

    [9]

    Li M, Zhi M, Zhu H, Wu W Y, Xu Q H, Jhon M H, Chan Y 2015 Nat. Commun. 6 1

    [10]

    Fan X, Yun S H 2014 Nat. Methods 11 141

    [11]

    Zhang J, Wang S, Liu K, Wei Y, Wang X, Duan Y 2015 Anal. Chem. 87 2959

    [12]

    Lim J M, Kim S H, Yang S M 2011 Microfluid. Nanofluid. 10 211

    [13]

    Wolfe D B, Conroy R S, Garstecki P, Mayers B T, Fischbach M A, Paul M P, Whitesides G M 2004 Proc. Natl. Acad. Sci. USA 101 12434

    [14]

    Vezenov D V, Mayers B T, Wolfe D B, Whitesides G M 2005 Appl. Phys. Lett. 86 041104

    [15]

    Lim J M, Kim S H, Choi J H, Yang S M 2008 Lab on Chip 8 1580

    [16]

    Moon H J, Chough Y T, An K 2000 Phys. Rev. Lett. 85 15

    [17]

    Zhang Y X, Pu X Y, Zhu K, Feng L 2011 J. Opt. Soc. Am. B 28 2048

    [18]

    Zhu K, Zhou L, You H H, Jiang N, Pu X Y 2011 Acta Phys. Sin. 60 054205 (in Chinese) [祝昆, 周丽, 尤洪海, 江楠, 普小云 2011 物理学报 60 054205]

    [19]

    Ulrich B 1986 Lambda Chrome Laser Dyes (Lambda: Lambda Physik Gmbh)

    [20]

    Mayers B T, Vezenov D V, Vullev V I, Whitesides G M 2005 Anal. Chem. 77 1310

    [21]

    Sun Y, Shopova S I, Wu C S, Amold S, Fan X D 2010 Proc. Natl. Acad. Sci. USA 107 16039

    [22]

    Pilgyu K, Perry S, Xavier S, Dakota O D, David E 2015 Sci. Reports 5 12087

    [23]

    Fan X D, White I M 2011 Nat. Photon. 5 591

    [24]

    Mellors J S, Jorabchi K, Smith L M, Ramsey M 2010 Anal. Chem. 82 967

    [25]

    Wu D, Luo Y, Zhou X M, Dai Z P 2005 Electrophoresis 26 1

    [26]

    Vasdekis A E, Laporte G P J 2013 Int. J. Mol. Sci. 12 8

  • [1]

    Thorsen T, Maerkl S J, Quake S R 2002 Science 298 580

    [2]

    Liu K K, Wu R G, Chuang Y J, Khoo H S, Huang S H, Tseng F G 2010 Sensors 10 6623

    [3]

    Manz A, Graber N, Widmer H 1990 Sensors and Actuators B: Chemical 1 244

    [4]

    Psaltis D, Quake S R, Yang C 2006 Nature 442 27

    [5]

    Helbo B, Kristensen A, Menon A 2003 J. Micromech. Microengin. 13 2

    [6]

    Monat C, Domachuk P, Eggleton P B 2007 Nat. Photon. 1 106

    [7]

    Chen Y C, Chen Q S, Fan X 2016 Lab on Chip 16 2228

    [8]

    Gilardi G, Beccherelli R 2013 J. Phys. D: Appl. Phys. 46 105104

    [9]

    Li M, Zhi M, Zhu H, Wu W Y, Xu Q H, Jhon M H, Chan Y 2015 Nat. Commun. 6 1

    [10]

    Fan X, Yun S H 2014 Nat. Methods 11 141

    [11]

    Zhang J, Wang S, Liu K, Wei Y, Wang X, Duan Y 2015 Anal. Chem. 87 2959

    [12]

    Lim J M, Kim S H, Yang S M 2011 Microfluid. Nanofluid. 10 211

    [13]

    Wolfe D B, Conroy R S, Garstecki P, Mayers B T, Fischbach M A, Paul M P, Whitesides G M 2004 Proc. Natl. Acad. Sci. USA 101 12434

    [14]

    Vezenov D V, Mayers B T, Wolfe D B, Whitesides G M 2005 Appl. Phys. Lett. 86 041104

    [15]

    Lim J M, Kim S H, Choi J H, Yang S M 2008 Lab on Chip 8 1580

    [16]

    Moon H J, Chough Y T, An K 2000 Phys. Rev. Lett. 85 15

    [17]

    Zhang Y X, Pu X Y, Zhu K, Feng L 2011 J. Opt. Soc. Am. B 28 2048

    [18]

    Zhu K, Zhou L, You H H, Jiang N, Pu X Y 2011 Acta Phys. Sin. 60 054205 (in Chinese) [祝昆, 周丽, 尤洪海, 江楠, 普小云 2011 物理学报 60 054205]

    [19]

    Ulrich B 1986 Lambda Chrome Laser Dyes (Lambda: Lambda Physik Gmbh)

    [20]

    Mayers B T, Vezenov D V, Vullev V I, Whitesides G M 2005 Anal. Chem. 77 1310

    [21]

    Sun Y, Shopova S I, Wu C S, Amold S, Fan X D 2010 Proc. Natl. Acad. Sci. USA 107 16039

    [22]

    Pilgyu K, Perry S, Xavier S, Dakota O D, David E 2015 Sci. Reports 5 12087

    [23]

    Fan X D, White I M 2011 Nat. Photon. 5 591

    [24]

    Mellors J S, Jorabchi K, Smith L M, Ramsey M 2010 Anal. Chem. 82 967

    [25]

    Wu D, Luo Y, Zhou X M, Dai Z P 2005 Electrophoresis 26 1

    [26]

    Vasdekis A E, Laporte G P J 2013 Int. J. Mol. Sci. 12 8

  • [1] 王澄瑶, 李旭, 卢晓云. COP-PDMS微流控芯片的制备及在太赫兹对肠道上皮细胞生物效应中的应用. 物理学报, 2021, 70(24): 248706. doi: 10.7498/aps.70.20211807
    [2] 李东阳, 张远宪, 欧永雄, 普小云. 聚二甲基硅氧烷微流道中光流控荧光共振能量转移激光. 物理学报, 2019, 68(5): 054203. doi: 10.7498/aps.68.20181696
    [3] 吕月兰, 尹向宝, 杨月, 刘永军, 苑立波. 染料掺杂液晶可调谐光纤荧光光源的研究. 物理学报, 2017, 66(15): 154205. doi: 10.7498/aps.66.154205
    [4] 胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋. 微流控技术制备ZnO纳米线阵列及其气敏特性. 物理学报, 2014, 63(20): 207102. doi: 10.7498/aps.63.207102
    [5] 孙运利, 王昌辉, 乐孜纯. 基于微流控光学可调谐的渐变折射率特性研究. 物理学报, 2014, 63(15): 154701. doi: 10.7498/aps.63.154701
    [6] 王海艳, 窦秀明, 倪海桥, 牛智川, 孙宝权. 等离子体增强InAs单量子点荧光辐射的研究. 物理学报, 2014, 63(2): 027801. doi: 10.7498/aps.63.027801
    [7] 马明磊, 吴坚, 杨沐, 宁永强, 商广义. 基于两端自发荧光辐射的808nm半导体激光器增益偏振特性实验表征和能带分析. 物理学报, 2013, 62(17): 174209. doi: 10.7498/aps.62.174209
    [8] 郭凯敏, 高 勋, 郝作强, 鲁毅, 孙长凯, 林景全. 空气中飞秒激光等离子体荧光辐射光谱研究. 物理学报, 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [9] 庄须叶, 刘永顺, 王淑荣, 吴一辉, 张平. 基于微加工工艺的光纤消逝场传感器及其长度特性研究. 物理学报, 2009, 58(4): 2501-2506. doi: 10.7498/aps.58.2501
    [10] 普小云, 白然, 向文丽, 杜飞, 江楠. 消逝波激励的双波段光纤回音壁模式激光辐射. 物理学报, 2009, 58(6): 3923-3928. doi: 10.7498/aps.58.3923
    [11] 张远宪, 普小云, 祝昆, 韩德昱, 江楠. 回音壁模式光纤激光器的阈值特性研究. 物理学报, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [12] 王正岭, 曹国荣, 印建平. 采用消逝波干涉的二维表面微光阱阵列. 物理学报, 2008, 57(10): 6233-6239. doi: 10.7498/aps.57.6233
    [13] 李宝兴, 叶美英, 褚巧燕, 俞 健. 玻璃微流控芯片表面改性的微观机理研究. 物理学报, 2007, 56(6): 3446-3452. doi: 10.7498/aps.56.3446
    [14] 倪 赟, 印建平. 采用四根单模光纤束实现消逝波原子(或分子)波导的理论分析. 物理学报, 2006, 55(1): 130-136. doi: 10.7498/aps.55.130
    [15] 乔启全, 陈 柏, 范 微, 陈嘉琳, 李学春, 林尊琪. 1053nm附近掺镱光纤超荧光光源的研究. 物理学报, 2003, 52(6): 1422-1426. doi: 10.7498/aps.52.1422
    [16] 王储记, 王 坚, 马兴孝. V-E传能中原子荧光辐射束缚的理论处理. 物理学报, 1998, 47(2): 198-207. doi: 10.7498/aps.47.198
    [17] 何林, 邓永元. 超荧光辐射的热力学模型分析. 物理学报, 1995, 44(1): 80-86. doi: 10.7498/aps.44.80
    [18] 杨国健, 胡岗. 受驱动三能级原子荧光辐射的暂态压缩. 物理学报, 1993, 42(9): 1403-1409. doi: 10.7498/aps.42.1403
    [19] 彭金生. 与双单色场作用的三能级原子的荧光光谱及双光子过程. 物理学报, 1985, 34(3): 408-413. doi: 10.7498/aps.34.408
    [20] 陈箎, 李华林, 丁家言. 论元素互致X射线荧光辐射强度. 物理学报, 1963, 19(11): 727-734. doi: 10.7498/aps.19.727
计量
  • 文章访问数:  4989
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-21
  • 修回日期:  2017-03-02
  • 刊出日期:  2017-05-05

/

返回文章
返回