搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅异质结太阳电池的物理机制和优化设计

肖友鹏 王涛 魏秀琴 周浪

引用本文:
Citation:

硅异质结太阳电池的物理机制和优化设计

肖友鹏, 王涛, 魏秀琴, 周浪

Physical mechanism and optimal design of silicon heterojunction solar cells

Xiao You-Peng, Wang Tao, Wei Xiu-Qin, Zhou Lang
PDF
导出引用
  • 硅异质结太阳电池是一种由非晶硅薄膜层沉积于晶硅吸收层构成的高效低成本的光伏器件,是一种具有大面积规模化生产潜力的光伏产品.异质结界面钝化品质、发射极的掺杂浓度和厚度以及透明导电层的功函数是影响硅异质结太阳电池性能的主要因素.针对这些影响因素已经有大量的研究工作在全世界范围内展开,并且有诸多研究小组提出了器件效率限制因素背后的物理机制.洞悉物理机制可为今后优化设计高性能的器件提供准则.因此及时总结硅异质结太阳电池的物理机制和优化设计非常必要.本文主要讨论了晶硅表面钝化、发射极掺杂层和透明导电层之间的功函数失配以及由此形成的肖特基势垒;讨论了屏蔽由功函数失配引起的能带弯曲所需的特征长度,即屏蔽长度;介绍了硅异质结太阳电池优化设计的数值模拟和实践;总结了硅异质结太阳电池的研究现状和发展前景.
    Silicon heterojunction (SHJ) solar cells are crystalline silicon wafer-based photovoltaic devices fabricated with thin-film deposition technology. The SHJ solar cells hold great potential for large-scale deployment for high conversion efficiencies with low-cost manufacturing. Recently Kaneka Corporation has fabricated an interdigitated-back-contact (IBC) SHJ solar cell with a certified 26.33% conversion efficiency in a large area (180.4 cm2), which is a world record for any 1-sun crystalline silicon wafer-based solar cell. The key feature of SHJ solar cells is the impressive highopen-circuit voltages (Voc) achieved by the excellent amorphous/crystalline silicon interface passivation. Generally, in SHJ solar cells, the boron doped hydrogenated amorphous silicon [(p)a-Si:H] serves as hole collector and the phosphorus doped hydrogenated amorphous silicon [(n) a-Si:H] functions as electron collector. In order to improve the lateral carrier transport of these layers, transparent conductive oxides (TCOs) are usually deposited on both sides of the solar cell. Therefore the parameters such as the heterointerface passivation quality, doping concentration and thickness of the a-Si:H doped layer, and work function of the transparent conductive oxide layer are the key factors that affect the performances of SHJ solar cells. Enormous research efforts have been devoted to studying the effects of the aforementioned influencing parameters on the photovoltaic characteristics of SHJ solar cells. Some research groups have addressed the physical mechanism behind the limitation of the solar cell efficiency. Owing to the insight into the physical mechanism some guidelines for optimally designing the high-performance solar cells in future are obtained. It seems therefore important to summarize the research efforts devoted to the physical mechanism and optimal design of SHJ solar cells.In the present review, we mainly discuss three important issues: 1) the amorphous/crystalline silicon interface passivation; 2) the Schottky barrier resulting from the work function mismatch between the (p)a-Si:H doped layer and the transparent conductive oxide layer; 3) the screening length that is required to efficiently shield the parasitic opposing band from bending originating from the work function mismatch between the (p)a-Si:H doped layer and the transparent conductive oxide layer. The numerical simulation and optimal design of SHJ solar cells are analyzed, and three strategies that may improve the solar cell performances are presented: 1) a hybrid SHJ solar cell structure with a rear heterojunction emitter and a phosphorus-diffused homojunction front surface field; 2) replacing the (p)a-Si:H doped layer by higher doping efficiency microcrystalline silicon alloys such as c-Si:H, c-SiOx:H or c-SiCx:H; 3) replacing the (p)a-Si:H doped layer by higher work function transition metal oxides such as MoOx, WOx or VOx. Finally, the research progress and future development of SHJ solar cells are also described.
      通信作者: 周浪, lzhou@ncu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51361022,61574072)和江西省博士后研究人员科研项目(批准号:2015KY12)资助的课题.
      Corresponding author: Zhou Lang, lzhou@ncu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51361022, 61574072) and the Post-Doctor Scientific Research Fund of Jiangxi Province, China (Grant No. 2015KY12).
    [1]

    Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovolt. 4 96

    [2]

    Seif J P, Menda D, Descoeudres A, Barraud L, Özdemir O, Ballif C, de Wolf S 2016 J. Appl. Phys. 120 1433

    [3]

    Zhu F, Wang D, Bian J, Liu J, Liu Z 2016 Sol. Energy Mater. Sol. Cells 157 74

    [4]

    Geissbhler J, de Wolf S, Faes A, Badel N, Jeangros Q, Tomasi A, Barraud L, Descoeudres A, Despeisse M, Ballif C 2014 IEEE J. Photovolt. 4 1055

    [5]

    Tous L, Granata S N, Choulat P, Bearda T, Michel A, Uruena A, Cornagliotti E, Aleman M, Gehlhaar R, Russell R, Duerinckx F, Szlufcik J 2015 Sol. Energy Mater. Sol. Cells 142 66

    [6]

    Heng J B, Fu J, Kong B, Chae Y, Wang W, Xie Z, Reddy A, Lam K, Beitel C, Liao C, Erben C, Huang Z, Xu Z 2015 IEEE J. Photovolt. 5 82

    [7]

    Dabirian A, Lachowicz A, Schttauf J W, Paviet-Salomon B, Morales-Masis M, Hessler-Wyser A, Despersse M, Ballif C 2017 Sol. Energy Mater. Sol. Cells 159 243

    [8]

    Madani Ghahfarokhi O, Chakanga K, Geissendoerfer S, Sergeev O, von Maydell K, Agert C 2015 Prog. Photovolt: Res. Appl. 23 1340

    [9]

    Sinton R A, Cuevas A 1996 Appl. Phys. Lett. 69 2510

    [10]

    Bivour M, Reusch M, Schröer S, Feldmann F, Temmler J, Steinkemper H, Hermle M 2014 IEEE J. Photovolt. 4 566

    [11]

    Schuttauf J W A, van der Werf K H M, Kielen I M, Kielen I M, van Sark W G J H M, Rath J K, Schropp R E I 2011 Appl. Phys. Lett. 98 153514

    [12]

    Chen J H, Yang J, Shen Y J, Li F, Chen J W, Liu H X, Xu Y, Mai Y H 2015 Acta Phys. Sin. 64 198801 (in Chinese) [陈剑辉, 杨静, 沈艳娇, 李锋, 陈静伟, 刘海旭, 许颖, 麦耀华 2015 物理学报 64 198801]

    [13]

    Pysch D, Meinhard C, Harder N P, Hermle M, Glunz S W 2011 J. Appl. Phys. 110 094516

    [14]

    Tasaki H, Kim W Y, Hallerdt M, Konagai M, Takahashi K 1988 J. Appl. Phys. 63 550

    [15]

    Leendertz C, Mingirulli N, Schulze T F, Kleider J P 2011 Appl. Phys. Lett. 98 202108

    [16]

    de Wolf S, Kondo M 2009 J. Appl. Phys. 105 103707

    [17]

    Holman Z C, Descoeudres A, Barraud L, Fernandez F Z 2012 IEEE J. Photovolt. 2 7

    [18]

    Schulze T F, Leendertz C, Mingirulli N, Korte L, Rech B 2011 Energy Procedia 8 282

    [19]

    Janotta A, Janssen R, Schmidt M, Graf T, Stutzmann M, Görgens L, Bergmaier A, Dollinger G, Hammerl C, Schreiber S, Stritzker B 2004 Phys. Rev. B 69 115206

    [20]

    Kane D E, Swanson R M 1985 Proceedings of the 18th IEEE Photovoltaic Specialists Conference New York, USA, 1985 p578

    [21]

    Cleef M W M V, Schropp R E I, Rubinelli F A 1998 Appl. Phys. Lett. 73 2609

    [22]

    Varache R, Kleider J P, Gueunier-Farret M E, Korte L 2013 Mater. Sci. Eng: B 178 593

    [23]

    Kirner S, Hartig M, Mazzarella L, Korte L, Frijnts T, Scherg-Kurmes H, Ring S, Stannowski B, Rech B, Schlatmann R 2015 Energy Procedia 77 725

    [24]

    Klein A, Körber C, Wachau A, Säuberlich F, Gassenbauer Y, Harvey S P, Proffit D E, Mason T O 2010 Materials 3 4892

    [25]

    Zhao L, Zhou C L, Li H L, Diao H W, Wang W J 2008 Sol. Energy Mater. Sol. Cells 92 673

    [26]

    Ritzau K U, Bivour M, Schröer S, Steinkemper H, Reinecke P, Wagner F, Hermle M 2014 Sol. Energy Mater. Sol. Cells 131 9

    [27]

    Ghannam M, Abdulraheem Y, Shehada G 2016 Sol. Energy Mater. Sol. Cells 145 423

    [28]

    Zhong C L, Geng K W, Yao R H 2010 Acta Phys. Sin. 59 6538 (in Chinese) [钟春良, 耿魁伟, 姚若河 2010 物理学报 59 6538]

    [29]

    Wen X, Zeng X, Liao W, Lei Q, Yin S 2013 Solar Energy 96 168

    [30]

    Favre W, Coignus J, Nguyen N, Lachaume R, Cabal R, Muñoz D 2013 Appl. Phys. Lett. 102 181118

    [31]

    Reusch M, Bivour M, Hermle M, Glunz S W 2013 Energy Procedia 38 297

    [32]

    Kim J, Abou-Kandil A, Fogel K, Hovel H, Sadana D K 2010 ACS Nano 4 7331

    [33]

    Bivour M, Schröer S, Hermle M 2013 Energy Procedia 38 658

    [34]

    Lachaume R, Favre W, Scheiblin P, Garros X, Nguyen N, Coignus J, Munoz D, Reimbold G 2013 Energy Procedia 38 770

    [35]

    Korte L, Conrad E, Angermann H, Stangl R, Schmidt M 2009 Sol. Energy Mater. Sol. Cells 93 905

    [36]

    Nicolás S M D, Muñoz D, Ozanne A S, Nguyen N, Ribeyron P J 2011 Energy Procedia 8 226

    [37]

    de Wolf S, Kondo M 2007 Appl. Phys. Lett. 91 112109

    [38]

    Schulze T F, Beushausen H N, Leendertz C, Dobrich A, Rech B, Korte L 2010 Appl. Phys. Lett. 96 515

    [39]

    Powell M J, Deane S C 1993 Phys. Rev. B 48 10815

    [40]

    Powell M J, Deane S C 1996 Phys. Rev. B 53 10121

    [41]

    Holman Z C, Filipic M, Descoeudres A, de Wolf S, Smole F, Topic M, Ballif C 2013 J. Appl. Phys. 113 013107

    [42]

    Demaurex B, de Wolf S, Descoeudres A, Holman Z C, Ballif C 2012 Appl. Phys. Lett. 101 171604

    [43]

    Rößler R, Leendertz C, Korte L, Mingirulli N, Rech B 2013 J. Appl. Phys. 113 144513

    [44]

    Centurioni E, Iencinella D 2003 IEEE Electron Device Lett. 70 177

    [45]

    Ji K S, Choi J, Choi W S, Lee H M, Kim D H 2010 Proceeding of the 35th IEEE Photovoltaic Specialists Conference Honolulu, Hawaii, June 20-25, 2010 p003190

    [46]

    Maslova O A, Alvarez J, Gushina E V, Favre W, Gueunier-Farret M E, Gudovskikh A S, Ankudinov A V, Terukov E I, Kleider J P 2010 Appl. Phys. Lett. 97 252110

    [47]

    Demaurex B, Seif J P, Smit S, Macco B, Kessels W M M, Geissbhler J, de Wolf S, Ballif C 2014 IEEE J. Photovolt. 4 1387

    [48]

    Bivour M, Reichel C, Hermle M, Glunz S W 2012 Sol. Energy Mater. Sol. Cells 106 11

    [49]

    Bivour M, Steinkemper H, Jeurink J, Schröer S, Hermle M 2014 Sol. Energy Mater. Sol. Cells 122 120

    [50]

    Qiu Z X, Ke C M, Aberle A G, Stangl R 2015 IEEE J. Photovolt. 5 1053

    [51]

    Battaglia C, Nicolas S M D, de Wolf S, Yin X, Zheng M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 113902

    [52]

    Geissbhler J, Werner J, Nicolas S M D, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, de Wolf S, Ballif C 2015 Appl. Phys. Lett. 107 081601

    [53]

    Bivour M, Jeurink J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34

    [54]

    Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109

    [55]

    Mews M, Korte L, Rech B 2016 Sol. Energy Mater. Sol. Cells 158 77

    [56]

    Qiao Z, Xie X J, Xue J M, Liu H, Liang L M, Hao Q Y, Liu C C 2015 Acta Phys. -Chim. Sin. 31 1207 (in Chinese) [乔治, 解新建, 薛俊明, 刘辉, 梁李敏, 赫秋艳, 刘彩池 2015 物理化学学报 31 1207]

    [57]

    Ghahfarokhi O M, Maydell K V, Agert C 2014 Appl. Phys. Lett. 104 113901

    [58]

    Seif J P, Descoeudres A, Nogay G, Hänni S, Nicolas S M D, Holm N, Geissb hler J, Hessler-Wyser A, Duchamp M, Dunin-Borkowski R E, Ledinsky M, de Wolf S, Ballif C 2016 IEEE J. Photovolt. 6 1

    [59]

    Nogay G, Seif J P, Riesen Y, Tomasi A, Jeangros Q, Wyrsch N, Haug F J, de Wolf S, Ballif C 2016 IEEE J. Photovolt. 6 1654

    [60]

    Mazzarella L, Kirner S, Stannowski B, Korte L, Rech B, Schlatmann R 2015 Appl. Phys. Lett. 106 023902

    [61]

    Nogay G, Stuckelberger J, Wyss P, Jeangros Q, Alleb C, Niquille X, Debrot F, Despeisse M, Haug F J, Löper P, Ballif C 2016 ACS Appl. Mater. Interfaces 8 35660

    [62]

    Mueller T, Wong J, Aberle A G 2012 Energy Procedia 15 97

    [63]

    63- Meng F, Liu J, Shen L, Shi J, Han A, Zhang L, Liu Y, Yu J, Zhang J, Zhou R, Liu Z 2017 Front Energy 11 78

    [64]

    Herasimenka S Y, Dauksher W J, Tracy C J, Lee J, Augusto A, Jain H, Tyler K, Kiefer Z, Balaji P, Bowden S, Honsberg C 2015 Proceedings of the 31st European Photovoltaic Solar Energy Conference Hamburg, Germany, September 14-18, 2015 p761

    [65]

    Adachi D, Hernández J L, Yamamoto K 2015 Appl. Phys. Lett. 107 233506

    [66]

    Yu C, Yang M, Zhang Y, Yi Z, Yang Y, Xie T, Deng L, Yan H, Zhang J, Xu X 2015 Proceedings of the 42nd IEEE Photovoltaic Specialist Conference Los Angeles, USA, June 14-19, 2015 p1

    [67]

    Mu noz D, Desrues T, Ozanne A S, Vecchi S D, Nicolás S M D, Jay F, Souche F, Nguyen N, Denis C, Arnal C, d'Alonzo G, Coignus J, Favre W, Blévin T, Valla A, Ozanne F, Salvetat T, Ribeyron P J 2012 Proceedings of the 27th European Photovoltaic Solar Energy Conference Frankfurt, Germany, September 24-28, 2012 p576

    [68]

    Kobayashi E, Nakamura N, Hashimoto K, Watabe Y 2013 Proceedings of the 28th European Photovoltaic Solar Energy Conference Villepinte, France, September 30-October 4, 2013 p691

    [69]

    Shih Z Y, Chen F S, Chang J, Hsieh W C, Chen M Y 2015 Proceedings of the 31st European Photovoltaic Solar Energy Conference Hamburg, Germany, September 14-18, 2015 p884

    [70]

    Mingirulli N, Haschke J, Gogolin R, Ferre R, Schulze TF, Dusterhoft J, Harder N P, Korte L, Brendel R, Rech B 2011 Phys. Status Solidi Rapid Res. Lett. 5 159

    [71]

    Lee S Y, Choi H, Li H, Ji K, Nam S, Choi J, Ahn S W, Lee H M, Park B 2014 Sol. Energy Mater. Sol. Cells 120 412

    [72]

    Harrison S, Nos O, D'Alonzo G, Denis C, Coll A, Munoz D 2016 Energy Procedia 92 730

    [73]

    Paviet-Salomon B, Tomasi A, Descoeudres A, Barraud L, Nicolay S, Despeisse M, de Wolf S, Ballif C 2015 IEEE J. Photovolt. 5 1293

    [74]

    Radhakrishnan H S, Bearda T, Xu M, Jonnak S K, Malik S, Hasan M, Depauw V, Filipič M, Nieuwenhuysen K V, Abdulraheem Y, Debucquoy M, Gordon I, Szlufcik J, Poortmans J 2016 Proceedings of the 43rd IEEE Photovoltaic Specialists Conference Portland, USA, June 5-10, 2016 p1182

    [75]

    Nakamura J, Asano N, Hieda T, Okamoto C, Katayama H, Nakamura K 2014 IEEE J. Photovolt. 4 1491

    [76]

    Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S 2014 IEEE J. Photovolt. 4 1433

    [77]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nature Energy 2 17032

  • [1]

    Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovolt. 4 96

    [2]

    Seif J P, Menda D, Descoeudres A, Barraud L, Özdemir O, Ballif C, de Wolf S 2016 J. Appl. Phys. 120 1433

    [3]

    Zhu F, Wang D, Bian J, Liu J, Liu Z 2016 Sol. Energy Mater. Sol. Cells 157 74

    [4]

    Geissbhler J, de Wolf S, Faes A, Badel N, Jeangros Q, Tomasi A, Barraud L, Descoeudres A, Despeisse M, Ballif C 2014 IEEE J. Photovolt. 4 1055

    [5]

    Tous L, Granata S N, Choulat P, Bearda T, Michel A, Uruena A, Cornagliotti E, Aleman M, Gehlhaar R, Russell R, Duerinckx F, Szlufcik J 2015 Sol. Energy Mater. Sol. Cells 142 66

    [6]

    Heng J B, Fu J, Kong B, Chae Y, Wang W, Xie Z, Reddy A, Lam K, Beitel C, Liao C, Erben C, Huang Z, Xu Z 2015 IEEE J. Photovolt. 5 82

    [7]

    Dabirian A, Lachowicz A, Schttauf J W, Paviet-Salomon B, Morales-Masis M, Hessler-Wyser A, Despersse M, Ballif C 2017 Sol. Energy Mater. Sol. Cells 159 243

    [8]

    Madani Ghahfarokhi O, Chakanga K, Geissendoerfer S, Sergeev O, von Maydell K, Agert C 2015 Prog. Photovolt: Res. Appl. 23 1340

    [9]

    Sinton R A, Cuevas A 1996 Appl. Phys. Lett. 69 2510

    [10]

    Bivour M, Reusch M, Schröer S, Feldmann F, Temmler J, Steinkemper H, Hermle M 2014 IEEE J. Photovolt. 4 566

    [11]

    Schuttauf J W A, van der Werf K H M, Kielen I M, Kielen I M, van Sark W G J H M, Rath J K, Schropp R E I 2011 Appl. Phys. Lett. 98 153514

    [12]

    Chen J H, Yang J, Shen Y J, Li F, Chen J W, Liu H X, Xu Y, Mai Y H 2015 Acta Phys. Sin. 64 198801 (in Chinese) [陈剑辉, 杨静, 沈艳娇, 李锋, 陈静伟, 刘海旭, 许颖, 麦耀华 2015 物理学报 64 198801]

    [13]

    Pysch D, Meinhard C, Harder N P, Hermle M, Glunz S W 2011 J. Appl. Phys. 110 094516

    [14]

    Tasaki H, Kim W Y, Hallerdt M, Konagai M, Takahashi K 1988 J. Appl. Phys. 63 550

    [15]

    Leendertz C, Mingirulli N, Schulze T F, Kleider J P 2011 Appl. Phys. Lett. 98 202108

    [16]

    de Wolf S, Kondo M 2009 J. Appl. Phys. 105 103707

    [17]

    Holman Z C, Descoeudres A, Barraud L, Fernandez F Z 2012 IEEE J. Photovolt. 2 7

    [18]

    Schulze T F, Leendertz C, Mingirulli N, Korte L, Rech B 2011 Energy Procedia 8 282

    [19]

    Janotta A, Janssen R, Schmidt M, Graf T, Stutzmann M, Görgens L, Bergmaier A, Dollinger G, Hammerl C, Schreiber S, Stritzker B 2004 Phys. Rev. B 69 115206

    [20]

    Kane D E, Swanson R M 1985 Proceedings of the 18th IEEE Photovoltaic Specialists Conference New York, USA, 1985 p578

    [21]

    Cleef M W M V, Schropp R E I, Rubinelli F A 1998 Appl. Phys. Lett. 73 2609

    [22]

    Varache R, Kleider J P, Gueunier-Farret M E, Korte L 2013 Mater. Sci. Eng: B 178 593

    [23]

    Kirner S, Hartig M, Mazzarella L, Korte L, Frijnts T, Scherg-Kurmes H, Ring S, Stannowski B, Rech B, Schlatmann R 2015 Energy Procedia 77 725

    [24]

    Klein A, Körber C, Wachau A, Säuberlich F, Gassenbauer Y, Harvey S P, Proffit D E, Mason T O 2010 Materials 3 4892

    [25]

    Zhao L, Zhou C L, Li H L, Diao H W, Wang W J 2008 Sol. Energy Mater. Sol. Cells 92 673

    [26]

    Ritzau K U, Bivour M, Schröer S, Steinkemper H, Reinecke P, Wagner F, Hermle M 2014 Sol. Energy Mater. Sol. Cells 131 9

    [27]

    Ghannam M, Abdulraheem Y, Shehada G 2016 Sol. Energy Mater. Sol. Cells 145 423

    [28]

    Zhong C L, Geng K W, Yao R H 2010 Acta Phys. Sin. 59 6538 (in Chinese) [钟春良, 耿魁伟, 姚若河 2010 物理学报 59 6538]

    [29]

    Wen X, Zeng X, Liao W, Lei Q, Yin S 2013 Solar Energy 96 168

    [30]

    Favre W, Coignus J, Nguyen N, Lachaume R, Cabal R, Muñoz D 2013 Appl. Phys. Lett. 102 181118

    [31]

    Reusch M, Bivour M, Hermle M, Glunz S W 2013 Energy Procedia 38 297

    [32]

    Kim J, Abou-Kandil A, Fogel K, Hovel H, Sadana D K 2010 ACS Nano 4 7331

    [33]

    Bivour M, Schröer S, Hermle M 2013 Energy Procedia 38 658

    [34]

    Lachaume R, Favre W, Scheiblin P, Garros X, Nguyen N, Coignus J, Munoz D, Reimbold G 2013 Energy Procedia 38 770

    [35]

    Korte L, Conrad E, Angermann H, Stangl R, Schmidt M 2009 Sol. Energy Mater. Sol. Cells 93 905

    [36]

    Nicolás S M D, Muñoz D, Ozanne A S, Nguyen N, Ribeyron P J 2011 Energy Procedia 8 226

    [37]

    de Wolf S, Kondo M 2007 Appl. Phys. Lett. 91 112109

    [38]

    Schulze T F, Beushausen H N, Leendertz C, Dobrich A, Rech B, Korte L 2010 Appl. Phys. Lett. 96 515

    [39]

    Powell M J, Deane S C 1993 Phys. Rev. B 48 10815

    [40]

    Powell M J, Deane S C 1996 Phys. Rev. B 53 10121

    [41]

    Holman Z C, Filipic M, Descoeudres A, de Wolf S, Smole F, Topic M, Ballif C 2013 J. Appl. Phys. 113 013107

    [42]

    Demaurex B, de Wolf S, Descoeudres A, Holman Z C, Ballif C 2012 Appl. Phys. Lett. 101 171604

    [43]

    Rößler R, Leendertz C, Korte L, Mingirulli N, Rech B 2013 J. Appl. Phys. 113 144513

    [44]

    Centurioni E, Iencinella D 2003 IEEE Electron Device Lett. 70 177

    [45]

    Ji K S, Choi J, Choi W S, Lee H M, Kim D H 2010 Proceeding of the 35th IEEE Photovoltaic Specialists Conference Honolulu, Hawaii, June 20-25, 2010 p003190

    [46]

    Maslova O A, Alvarez J, Gushina E V, Favre W, Gueunier-Farret M E, Gudovskikh A S, Ankudinov A V, Terukov E I, Kleider J P 2010 Appl. Phys. Lett. 97 252110

    [47]

    Demaurex B, Seif J P, Smit S, Macco B, Kessels W M M, Geissbhler J, de Wolf S, Ballif C 2014 IEEE J. Photovolt. 4 1387

    [48]

    Bivour M, Reichel C, Hermle M, Glunz S W 2012 Sol. Energy Mater. Sol. Cells 106 11

    [49]

    Bivour M, Steinkemper H, Jeurink J, Schröer S, Hermle M 2014 Sol. Energy Mater. Sol. Cells 122 120

    [50]

    Qiu Z X, Ke C M, Aberle A G, Stangl R 2015 IEEE J. Photovolt. 5 1053

    [51]

    Battaglia C, Nicolas S M D, de Wolf S, Yin X, Zheng M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 113902

    [52]

    Geissbhler J, Werner J, Nicolas S M D, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, de Wolf S, Ballif C 2015 Appl. Phys. Lett. 107 081601

    [53]

    Bivour M, Jeurink J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34

    [54]

    Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109

    [55]

    Mews M, Korte L, Rech B 2016 Sol. Energy Mater. Sol. Cells 158 77

    [56]

    Qiao Z, Xie X J, Xue J M, Liu H, Liang L M, Hao Q Y, Liu C C 2015 Acta Phys. -Chim. Sin. 31 1207 (in Chinese) [乔治, 解新建, 薛俊明, 刘辉, 梁李敏, 赫秋艳, 刘彩池 2015 物理化学学报 31 1207]

    [57]

    Ghahfarokhi O M, Maydell K V, Agert C 2014 Appl. Phys. Lett. 104 113901

    [58]

    Seif J P, Descoeudres A, Nogay G, Hänni S, Nicolas S M D, Holm N, Geissb hler J, Hessler-Wyser A, Duchamp M, Dunin-Borkowski R E, Ledinsky M, de Wolf S, Ballif C 2016 IEEE J. Photovolt. 6 1

    [59]

    Nogay G, Seif J P, Riesen Y, Tomasi A, Jeangros Q, Wyrsch N, Haug F J, de Wolf S, Ballif C 2016 IEEE J. Photovolt. 6 1654

    [60]

    Mazzarella L, Kirner S, Stannowski B, Korte L, Rech B, Schlatmann R 2015 Appl. Phys. Lett. 106 023902

    [61]

    Nogay G, Stuckelberger J, Wyss P, Jeangros Q, Alleb C, Niquille X, Debrot F, Despeisse M, Haug F J, Löper P, Ballif C 2016 ACS Appl. Mater. Interfaces 8 35660

    [62]

    Mueller T, Wong J, Aberle A G 2012 Energy Procedia 15 97

    [63]

    63- Meng F, Liu J, Shen L, Shi J, Han A, Zhang L, Liu Y, Yu J, Zhang J, Zhou R, Liu Z 2017 Front Energy 11 78

    [64]

    Herasimenka S Y, Dauksher W J, Tracy C J, Lee J, Augusto A, Jain H, Tyler K, Kiefer Z, Balaji P, Bowden S, Honsberg C 2015 Proceedings of the 31st European Photovoltaic Solar Energy Conference Hamburg, Germany, September 14-18, 2015 p761

    [65]

    Adachi D, Hernández J L, Yamamoto K 2015 Appl. Phys. Lett. 107 233506

    [66]

    Yu C, Yang M, Zhang Y, Yi Z, Yang Y, Xie T, Deng L, Yan H, Zhang J, Xu X 2015 Proceedings of the 42nd IEEE Photovoltaic Specialist Conference Los Angeles, USA, June 14-19, 2015 p1

    [67]

    Mu noz D, Desrues T, Ozanne A S, Vecchi S D, Nicolás S M D, Jay F, Souche F, Nguyen N, Denis C, Arnal C, d'Alonzo G, Coignus J, Favre W, Blévin T, Valla A, Ozanne F, Salvetat T, Ribeyron P J 2012 Proceedings of the 27th European Photovoltaic Solar Energy Conference Frankfurt, Germany, September 24-28, 2012 p576

    [68]

    Kobayashi E, Nakamura N, Hashimoto K, Watabe Y 2013 Proceedings of the 28th European Photovoltaic Solar Energy Conference Villepinte, France, September 30-October 4, 2013 p691

    [69]

    Shih Z Y, Chen F S, Chang J, Hsieh W C, Chen M Y 2015 Proceedings of the 31st European Photovoltaic Solar Energy Conference Hamburg, Germany, September 14-18, 2015 p884

    [70]

    Mingirulli N, Haschke J, Gogolin R, Ferre R, Schulze TF, Dusterhoft J, Harder N P, Korte L, Brendel R, Rech B 2011 Phys. Status Solidi Rapid Res. Lett. 5 159

    [71]

    Lee S Y, Choi H, Li H, Ji K, Nam S, Choi J, Ahn S W, Lee H M, Park B 2014 Sol. Energy Mater. Sol. Cells 120 412

    [72]

    Harrison S, Nos O, D'Alonzo G, Denis C, Coll A, Munoz D 2016 Energy Procedia 92 730

    [73]

    Paviet-Salomon B, Tomasi A, Descoeudres A, Barraud L, Nicolay S, Despeisse M, de Wolf S, Ballif C 2015 IEEE J. Photovolt. 5 1293

    [74]

    Radhakrishnan H S, Bearda T, Xu M, Jonnak S K, Malik S, Hasan M, Depauw V, Filipič M, Nieuwenhuysen K V, Abdulraheem Y, Debucquoy M, Gordon I, Szlufcik J, Poortmans J 2016 Proceedings of the 43rd IEEE Photovoltaic Specialists Conference Portland, USA, June 5-10, 2016 p1182

    [75]

    Nakamura J, Asano N, Hieda T, Okamoto C, Katayama H, Nakamura K 2014 IEEE J. Photovolt. 4 1491

    [76]

    Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S 2014 IEEE J. Photovolt. 4 1433

    [77]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nature Energy 2 17032

  • [1] 肖友鹏, 王怀平, 冯林. 硒化亚锗异质结太阳电池模拟研究. 物理学报, 2023, 72(24): 248801. doi: 10.7498/aps.72.20231220
    [2] 任程超, 周佳凯, 张博宇, 刘璋, 赵颖, 张晓丹, 侯国付. 基于隧穿氧化物钝化接触的高效晶体硅太阳电池的研究现状与展望. 物理学报, 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [3] 潘洪英, 全知觉. p层空穴浓度及厚度对InGaN同质结太阳电池性能的影响机理研究. 物理学报, 2019, 68(19): 196103. doi: 10.7498/aps.68.20191042
    [4] 陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹. Cu2O/ZnO氧化物异质结太阳电池的研究进展. 物理学报, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [5] 耿超, 郑义, 张永哲, 严辉. 硅薄膜太阳电池表面纳米线阵列光学设计. 物理学报, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [6] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述. 物理学报, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [7] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究. 物理学报, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [8] 曾湘安, 艾斌, 邓幼俊, 沈辉. 硅片及其太阳电池的光衰规律研究. 物理学报, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [9] 贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉. 选择性发射极晶体硅太阳电池的二维器件模拟及性能优化. 物理学报, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [10] 张永, 单智发, 蔡建九, 吴洪清, 李俊承, 陈凯轩, 林志伟, 王向武. 空间用GaInP/GaAs/In0.3Ga0.7 As(1 eV)倒装三结太阳电池研制. 物理学报, 2013, 62(15): 158802. doi: 10.7498/aps.62.158802
    [11] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [12] 曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖. 微晶硅锗太阳电池本征层纵向结构的优化. 物理学报, 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
    [13] 周春兰, 励旭东, 王文静, 赵雷, 李海玲, 刁宏伟, 曹晓宁. 氧化随机织构硅表面对单晶硅太阳电池性能的影响研究. 物理学报, 2011, 60(3): 038201. doi: 10.7498/aps.60.038201
    [14] 方昕, 沈文忠. 多晶硅中的氧碳行为及其对太阳电池转换效率的影响. 物理学报, 2011, 60(8): 088801. doi: 10.7498/aps.60.088801
    [15] 贾明, 田忠良, 赖延清, 李劼, 伊继光, 闫剑锋, 刘业翔. 电解精炼制备太阳级硅杂质行为研究. 物理学报, 2010, 59(3): 1938-1945. doi: 10.7498/aps.59.1938
    [16] 蔡宏琨, 陶科, 王林申, 赵敬芳, 隋妍萍, 张德贤. 柔性衬底非晶硅薄膜太阳电池界面处理的研究. 物理学报, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [17] 任 驹, 郑建邦, 赵建林. 给体-受体型有机太阳电池光敏层的优化设计. 物理学报, 2007, 56(5): 2868-2872. doi: 10.7498/aps.56.2868
    [18] 胡志华, 廖显伯, 刁宏伟, 夏朝凤, 许 玲, 曾湘波, 郝会颖, 孔光临. 非晶硅太阳电池光照J-V特性的AMPS模拟. 物理学报, 2005, 54(5): 2302-2306. doi: 10.7498/aps.54.2302
    [19] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [20] 胡志华, 廖显伯, 曾湘波, 徐艳月, 张世斌, 刁宏伟, 孔光临. 纳米硅(nc-Si:H )/晶体硅(c-Si)异质结太阳电池的数值模拟分析. 物理学报, 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
计量
  • 文章访问数:  5577
  • PDF下载量:  468
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-30
  • 修回日期:  2017-02-19
  • 刊出日期:  2017-05-05

/

返回文章
返回