搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四元裂解位相调制实现相干光通过散射介质聚焦

张诚 方龙杰 朱建华 左浩毅 高福华 庞霖

引用本文:
Citation:

四元裂解位相调制实现相干光通过散射介质聚焦

张诚, 方龙杰, 朱建华, 左浩毅, 高福华, 庞霖

Four-element division algorithm for focusing light through scattering medium

Zhang Cheng, Fang Long-Jie, Zhu Jian-Hua, Zuo Hao-Yi, Gao Fu-Hua, Pang Lin
PDF
导出引用
  • 光在不均匀介质中传播会受到散射的干扰,在这些散射材料中,例如粉末、生物组织、亚波长颗粒对入射光多次散射使得出射光无法聚焦,从而在接收平面形成散斑.本文提出四元裂解位相调制方法对入射相干光场进行调制,使其通过散射介质聚焦.此方法利用入射光场全场调制,充分考虑光场单元之间的干涉作用,从整个空间光调制器的调制面开始,逐层进行四元裂解及位相优化.运用此方法在实验中实现了相干光的前向散射和后向散射有效聚焦,这为生物医学领域中通过散射介质成像提供了新的思路和方法.
    Light transport in complex disordered medium, such as white paint, milk, is a fundamental physical phenomenon, and it plays an important role in numerous applications including imaging through turbid layers, and quantum information processes. However, all spatial coherence is lost due to the distorted incident wavefront caused by repeated scattering and interference. Incident coherent light diffuses through the medium and cannot form a geometric focus but a volume speckle field on the imaging plane. In this paper, we propose a four-element division algorithm and experimentally demonstrate that using this algorithm to modulate the incident light, the shaped wavefront can focus through disordered material. At the beginning, we start with four segments on spatial light modulator (SLM), changing the phase of each segment from 0-2πup to search for the optimal phase in terms of the maximal output intensity at a certain field. After the optimal phase of these four segments is found, each of all segments is divided further into four subsegments, so 16 subsegments are formed on the SLM. Just like the first step, the optimal phase is found by cycling the phases of these 16 subsegments. Sequentially, this procedure is repeated several times, so more and more subsegments are obtained. As a result, the modulated input light from SLM can be focused after it has passed through the turbid scattering medium. By employing this approach in the forward scattered experiment, the total pixels of spatial light modulator are divided into 4-4096 segments to shape the incident light. After separately searching for all the optimal phase distributions, we can see that a sharp focusing is gradually achieved. Likewise, in backscattered experiment, 4-1024 segments are used to focus the incident light after passing through the diffuse material. In comparison with stepwise sequential algorithm, the main advantage of our method is that the interference effect of all segments on SLM is taken into consideration, which means that the modulated and the modulating segments are connected with each other. In this way, the signal-to-noise ratio is higher and no iteration is needed. All this experiment shows that the four-element division algorithm can be employed to focus the incident light passing through a disorder material efficiently, which maybe provide a new idea and method in the field of biomedical imaging through scattering medium.
      通信作者: 庞霖, panglin_p@yahoo.com
    • 基金项目: 国家自然科学基金(批准号:61377054,61675140)资助的课题.
      Corresponding author: Pang Lin, panglin_p@yahoo.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61377054, 61675140).
    [1]

    Ishimaru A 1978 Wave Propagation and Scattering in Random Media (New York: Academic Press) pp349-351

    [2]

    Sebbah P 2012 Waves and Imaging through Complex Media (Berlin: Springer Science & Business Media) pp29-53

    [3]

    Tuchin V 2007 Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (Bellingham: SPIE Press) pp3-20

    [4]

    Sebbah P 2010 Waves and Imaging through Complex Media (Netherlands: Kluwer Academic Publishers) pp15-26

    [5]

    Hayakawa C K, Venugopalan V, Krishnamachari V V, Potma E O 2009 Phys. Rev. Lett. 103 043903

    [6]

    Xi S X, Wang X L, Huang S, Chang S J, Lin L 2015 Acta Phys. Sin. 64 114204 (in Chinese) [席思星, 王晓雷, 黄帅, 常胜江, 林列 2015 物理学报 64 114204]

    [7]

    Zhou Q Q, Xu S W, Lu J F, Zhou Q, Ji X M, Yin J P 2013 Acta Phys. Sin. 62 153701 (in Chinese) [周巧巧, 徐淑武, 陆俊发, 周琦, 纪宪明, 印建平 2013 物理学报 62 153701]

    [8]

    Li X Q, Wang T, Ji X L 2014 Acta Phys. Sin. 63 134209 (in Chinese) [李晓庆, 王涛, 季小玲 2014 物理学报 63 134209]

    [9]

    Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309

    [10]

    Vellekoop I M, Mosk A P 2008 Phys. Rev. Lett. 101 120601

    [11]

    Yaqoob Z, Psaltis D, Feld M S, Yang C 2008 Nature Photon. 2 110

    [12]

    Cui M, McDowell E J, Yang C 2009 Appl. Phys. Lett. 95 123702

    [13]

    Hillman T, Yamauchi T, Choi W, Dasari R, Yaqoob Z, Park Y 2013 Sci. Rep. 3 1909

    [14]

    Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C, Gigan S 2010 Phys. Rev. Lett. 104 100601

    [15]

    Yoon J, Lee K R, Park J, Park Y 2015 Opt. Express 23 10158

    [16]

    Cui M 2011 Opt. Lett. 36 870

    [17]

    Conkey D B, Brown A N, Caravaca-Aguirre A M, Piestun R 2012 Opt. Express 20 4840

    [18]

    Vellekoop I M, Mosk A P 2008 Opt. Commun. 281 3071

    [19]

    Goodman J W 2000 Statistical Optics (New York: Wiley) pp30-45

    [20]

    Garcia N, Genack A Z 1989 Phys. Rev. Lett. 63 1678

    [21]

    Webster M A, Gerke T D, Weiner A M, Webb K J 2004 Opt. Lett. 29 1491

    [22]

    Beenakker C W J 1997 Rev. Mod. Phys. 69 731

    [23]

    Conkey D B, Caravaca-Aguirre A M, Piestun R 2012 Opt. Express 20 1733

  • [1]

    Ishimaru A 1978 Wave Propagation and Scattering in Random Media (New York: Academic Press) pp349-351

    [2]

    Sebbah P 2012 Waves and Imaging through Complex Media (Berlin: Springer Science & Business Media) pp29-53

    [3]

    Tuchin V 2007 Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (Bellingham: SPIE Press) pp3-20

    [4]

    Sebbah P 2010 Waves and Imaging through Complex Media (Netherlands: Kluwer Academic Publishers) pp15-26

    [5]

    Hayakawa C K, Venugopalan V, Krishnamachari V V, Potma E O 2009 Phys. Rev. Lett. 103 043903

    [6]

    Xi S X, Wang X L, Huang S, Chang S J, Lin L 2015 Acta Phys. Sin. 64 114204 (in Chinese) [席思星, 王晓雷, 黄帅, 常胜江, 林列 2015 物理学报 64 114204]

    [7]

    Zhou Q Q, Xu S W, Lu J F, Zhou Q, Ji X M, Yin J P 2013 Acta Phys. Sin. 62 153701 (in Chinese) [周巧巧, 徐淑武, 陆俊发, 周琦, 纪宪明, 印建平 2013 物理学报 62 153701]

    [8]

    Li X Q, Wang T, Ji X L 2014 Acta Phys. Sin. 63 134209 (in Chinese) [李晓庆, 王涛, 季小玲 2014 物理学报 63 134209]

    [9]

    Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309

    [10]

    Vellekoop I M, Mosk A P 2008 Phys. Rev. Lett. 101 120601

    [11]

    Yaqoob Z, Psaltis D, Feld M S, Yang C 2008 Nature Photon. 2 110

    [12]

    Cui M, McDowell E J, Yang C 2009 Appl. Phys. Lett. 95 123702

    [13]

    Hillman T, Yamauchi T, Choi W, Dasari R, Yaqoob Z, Park Y 2013 Sci. Rep. 3 1909

    [14]

    Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C, Gigan S 2010 Phys. Rev. Lett. 104 100601

    [15]

    Yoon J, Lee K R, Park J, Park Y 2015 Opt. Express 23 10158

    [16]

    Cui M 2011 Opt. Lett. 36 870

    [17]

    Conkey D B, Brown A N, Caravaca-Aguirre A M, Piestun R 2012 Opt. Express 20 4840

    [18]

    Vellekoop I M, Mosk A P 2008 Opt. Commun. 281 3071

    [19]

    Goodman J W 2000 Statistical Optics (New York: Wiley) pp30-45

    [20]

    Garcia N, Genack A Z 1989 Phys. Rev. Lett. 63 1678

    [21]

    Webster M A, Gerke T D, Weiner A M, Webb K J 2004 Opt. Lett. 29 1491

    [22]

    Beenakker C W J 1997 Rev. Mod. Phys. 69 731

    [23]

    Conkey D B, Caravaca-Aguirre A M, Piestun R 2012 Opt. Express 20 1733

  • [1] 廖涌泉, 张晓雪, 刘卉, 朱香渝, 陈旭东, 林志立. 基于数字微镜器件超像素法实现散射介质传输矩阵的自参考干涉测量. 物理学报, 2023, 72(22): 224201. doi: 10.7498/aps.72.20230660
    [2] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [3] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [4] 刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明. 激光照明条件对超振荡平面透镜聚焦性能的影响. 物理学报, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [5] 张克瑾, 刘磊, 曾庆伟, 高太长, 胡帅, 陈鸣. 不同散射介质对飞秒脉冲激光传输特性影响研究. 物理学报, 2019, 68(19): 194207. doi: 10.7498/aps.68.20190430
    [6] 张熙程, 方龙杰, 庞霖. 强散射过程中基于奇异值分解的光学传输矩阵优化方法. 物理学报, 2018, 67(10): 104202. doi: 10.7498/aps.67.20172688
    [7] 张洪波, 张希仁. 用于实现散射介质中时间反演的数字相位共轭的相干性. 物理学报, 2018, 67(5): 054201. doi: 10.7498/aps.67.20172308
    [8] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [9] 谷文浩, 常胜江, 范飞, 张选洲. 基于锑化铟亚波长阵列结构的太赫兹聚焦器件. 物理学报, 2016, 65(1): 010701. doi: 10.7498/aps.65.010701
    [10] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [11] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展. 物理学报, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [12] 胡昌宝, 许吉, 丁剑平. 介质填充型二次柱面等离激元透镜的亚波长聚焦. 物理学报, 2016, 65(13): 137301. doi: 10.7498/aps.65.137301
    [13] 陈直, 许良, 陈荣昌, 杜国浩, 邓彪, 谢红兰, 肖体乔. Kinoform单透镜的硬X射线聚焦性能. 物理学报, 2015, 64(16): 164104. doi: 10.7498/aps.64.164104
    [14] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [15] 王铮, 高春清, 辛璟焘. 高阶矢量光束高数值孔径聚焦特性的研究. 物理学报, 2012, 61(12): 124209. doi: 10.7498/aps.61.124209
    [16] 于永江, 陈建农, 闫金良, 王菲菲. 聚焦径向调制Bessel-Gaussian光束实现亚波长尺寸纵向偏振光束. 物理学报, 2011, 60(4): 044205. doi: 10.7498/aps.60.044205
    [17] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析. 物理学报, 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [18] 周飞, 丁天怀. 散射介质中层间杂质检测效率的影响因素及分析. 物理学报, 2010, 59(12): 8451-8458. doi: 10.7498/aps.59.8451
    [19] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [20] 王 丽, 胡响明. 相长干涉:电磁诱导吸收. 物理学报, 2004, 53(8): 2544-2550. doi: 10.7498/aps.53.2544
计量
  • 文章访问数:  4807
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-17
  • 修回日期:  2017-03-20
  • 刊出日期:  2017-06-05

/

返回文章
返回