搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于双波长的光声测温技术

廖宇 简小华 崔崤峣 张麒

引用本文:
Citation:

一种基于双波长的光声测温技术

廖宇, 简小华, 崔崤峣, 张麒

Photoacoustic temperature measurement based on dual-wavelength method

Liao Yu, Jian Xiao-Hua, Cui Yao-Yao, Zhang Qi
PDF
导出引用
  • 光声测温是一种利用光声效应来进行温度监控的新方法,具有非侵入式、高灵敏度和探测深度较深等优点.但现有的单波长光声测温方法极易受到系统及测量环境干扰而导致测量精度降低.为了解决这一问题,本文提出了一种双波长光声温度测量方法.在光声测温理论的基础上,分析推导了双波长光声测温的基本原理,并进行了仿体及离体组织样品的双波长光声测温实验.实验结果显示,与传统单波长模式相比,双波长模式下的光声温度测量误差明显减小,测量精度平均提高35%以上.研究结果表明双波长光声测温方法能够有效提高光声温度测量的精度和稳定性,可作为一种更精准的光声温度监控方法应用于医疗手术等领域.
    Photoacoustic temperature measurement is a novel technique in which photoacoustic effect is used to measure temperature. It has the advantages of non-invasiveness, high sensitivity and deep penetration depth, which is suitable for monitoring the temperature distribution for the safe deposition of heat energy and efficient destruction of tumor cells during thermotherapy or cryotherapy. However, the present reported methods usually use one single wavelength for photoacoustic temperature measuring and are vulnerable to systematic and environmental influence, including the instability of system caused by fluctuation of laser energy, position displacement of transducer, and tissue complexity, which could reduce the measuring accuracy and stability. To solve this problem, a new photoacoustic temperature measuring method by employing two laser wavelengths is proposed in this paper. Firstly a brief theoretical analysis of dual-wavelengths photoacoustic temperature method is performed based on the linear relationship between photoacoustic signal and tissue temperature under two different wavelengths. Then two different samples including phantom of graphite and ex vivo pig blood are experimented respectively. The experimental temperature is set to be in a range of 26 ℃-48 ℃, which is controlled by a precise hot plate. And for improving the detection accuracy, the dual-wavelengths are selected as 760 and 900 nm for graphite phantom, 820 nm and 860 nm for ex vivo pig blood according to their absorption spectrum repetitively. The obtained results reveal that the temperature measuring correlation coefficients by dual-wavelength method can reach to 0.98 in graphite phantom and 0.99 in ex vivo tissue, respectively. And the average measurement deviation decreases to 0.88 ℃ in dual-wavelength method from 1.31 ℃ for the traditional single wavelength method for graphite phantom. While in ex vivo tissue, the measurement deviation decreases to 0.90 ℃ in dual-wavelength method from the average value 1.45 ℃ for the single wavelength method. Furthermore, the standard deviations of error are respectively reduced by an average of 38% in graphite phantom and an average of 30% in ex vivo tissue, respectively. These results indicate that the dual-wavelength method of photoacoustic temperature measurement can improve both the measuring accuracy and stability, and has a potential to be applied to medical therapy and other biomedical fields.
      通信作者: 崔崤峣, cuiyy@sibet.ac.cn;zhangq@shu.edu.cn ; 张麒, cuiyy@sibet.ac.cn;zhangq@shu.edu.cn
    • 基金项目: 江苏省国际科技合作项目(批准号:BZ2016023)、科技部重点研发项目(批准号:2016YFC0103302)、国家博士后面上项目(批准号:2015M581409)、江苏省面上研究项目(批准号:BK20161235)和苏州市前瞻性应用研究(批准号:SYG201607,SZS201510,SYS201456)资助的课题.
      Corresponding author: Cui Yao-Yao, cuiyy@sibet.ac.cn;zhangq@shu.edu.cn ; Zhang Qi, cuiyy@sibet.ac.cn;zhangq@shu.edu.cn
    • Funds: Project supported by the International Scientific Collaboration Program of Jiangsu Province, China (Grant No. BZ2016023), the National Key Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2016YFC0103302), the National Post-doctoral General Program, China (Grant No. 2015M581409), the General Program of Jiangsu Province, China (Grant No. BK20161235), and the Prospective Application Research of Suzhou, China (Grant Nos. SYG201607, SZS201510, SYS201456).
    [1]

    Bell A G 1880 Am. J. Sci. 20 305

    [2]

    Jian X H, Cui Y Y, Xiang Y J, Han Z L 2012 Acta Phys. Sin. 61 217801 (in Chinese) [简小华, 崔崤峣, 向永嘉, 韩志乐 2012 物理学报 61 217801]

    [3]

    Larina I V, Larin K V, Esenaliev R O 2005 J. Phys. D: Appl. Phys. 38 2633

    [4]

    Pramanik M, Wang L V 2009 J. Biomed. Opt. 14 054024

    [5]

    Shao P, Cox B, Zemp R J 2011 Appl. Opt. 50 3145

    [6]

    Sigrist M W 1986 J. Appl. Phys. 60 R83

    [7]

    Burmistrova L V, Karabutov A A, Rudenko O V, Cherepetskaya E B 1979 Sov. Phys. Acoust. 25 348

    [8]

    Welch A J, Gemert M J C V 2011 Optical-Thermal Response of Laser-Irradiated Tissue (2nd Ed.) (New York: Springer) pp3-947

    [9]

    Seip R, Ebbini E S 1995 IEEE Trans. Bio-Med. Eng. 42 828

    [10]

    Steiner P, Botnar R, Dubno B, Zimmermann G G, Gazelle G S, Debatin J F 1998 Radiology 206 803

    [11]

    Graham S J, Bronskill M J, Henkelman R M 1998 Magn. Reson. Med. 39 198

    [12]

    Xu M H, Wang L H V 2006 Rev. Sci. Instrum. 77 041101

    [13]

    Jiao Y, Jian X H, Xiang Y J, Cui Y Y 2013 Acta Phys. Sin. 62 087803 (in Chinese) [焦阳, 简小华, 向永嘉, 崔崤峣 2013 物理学报 62 087803]

    [14]

    Wu D, Tao C, Liu X J 2010 Acta Phys. Sin. 59 5845 (in Chinese) [吴丹, 陶超, 刘晓峻 2010 物理学报 59 5845]

    [15]

    Li Z, Chen H, Zhou F, Li H, Chen W R 2015 Sensors-Basel 15 5583

    [16]

    Daoudi K, van Es P, Manohar S, Steenbergen W 2013 J. Biomed. Opt. 18 116009

    [17]

    Huang C, Nie L, Schoonover R W, Wang L V, Anastasio M A 2012 J. Biomed. Opt. 17 061211

    [18]

    Gusev V E 1993 Laser Optoacoustics (New York: American Institute of Physics) pp1-271

    [19]

    Yin J, Tao C, Liu X J 2015 Acta Phys. Sin. 64 098102 (in Chinese) [殷杰, 陶超, 刘晓峻 2015 物理学报 64 098102]

    [20]

    Sethuraman S, Amirian J H, Litovsky S H, Smalling R W, Emelianov S Y 2008 Opt. Express 16 3362

    [21]

    Tromberg B J, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, Svaasand L, Butler J 2000 Neoplasia 2 26

  • [1]

    Bell A G 1880 Am. J. Sci. 20 305

    [2]

    Jian X H, Cui Y Y, Xiang Y J, Han Z L 2012 Acta Phys. Sin. 61 217801 (in Chinese) [简小华, 崔崤峣, 向永嘉, 韩志乐 2012 物理学报 61 217801]

    [3]

    Larina I V, Larin K V, Esenaliev R O 2005 J. Phys. D: Appl. Phys. 38 2633

    [4]

    Pramanik M, Wang L V 2009 J. Biomed. Opt. 14 054024

    [5]

    Shao P, Cox B, Zemp R J 2011 Appl. Opt. 50 3145

    [6]

    Sigrist M W 1986 J. Appl. Phys. 60 R83

    [7]

    Burmistrova L V, Karabutov A A, Rudenko O V, Cherepetskaya E B 1979 Sov. Phys. Acoust. 25 348

    [8]

    Welch A J, Gemert M J C V 2011 Optical-Thermal Response of Laser-Irradiated Tissue (2nd Ed.) (New York: Springer) pp3-947

    [9]

    Seip R, Ebbini E S 1995 IEEE Trans. Bio-Med. Eng. 42 828

    [10]

    Steiner P, Botnar R, Dubno B, Zimmermann G G, Gazelle G S, Debatin J F 1998 Radiology 206 803

    [11]

    Graham S J, Bronskill M J, Henkelman R M 1998 Magn. Reson. Med. 39 198

    [12]

    Xu M H, Wang L H V 2006 Rev. Sci. Instrum. 77 041101

    [13]

    Jiao Y, Jian X H, Xiang Y J, Cui Y Y 2013 Acta Phys. Sin. 62 087803 (in Chinese) [焦阳, 简小华, 向永嘉, 崔崤峣 2013 物理学报 62 087803]

    [14]

    Wu D, Tao C, Liu X J 2010 Acta Phys. Sin. 59 5845 (in Chinese) [吴丹, 陶超, 刘晓峻 2010 物理学报 59 5845]

    [15]

    Li Z, Chen H, Zhou F, Li H, Chen W R 2015 Sensors-Basel 15 5583

    [16]

    Daoudi K, van Es P, Manohar S, Steenbergen W 2013 J. Biomed. Opt. 18 116009

    [17]

    Huang C, Nie L, Schoonover R W, Wang L V, Anastasio M A 2012 J. Biomed. Opt. 17 061211

    [18]

    Gusev V E 1993 Laser Optoacoustics (New York: American Institute of Physics) pp1-271

    [19]

    Yin J, Tao C, Liu X J 2015 Acta Phys. Sin. 64 098102 (in Chinese) [殷杰, 陶超, 刘晓峻 2015 物理学报 64 098102]

    [20]

    Sethuraman S, Amirian J H, Litovsky S H, Smalling R W, Emelianov S Y 2008 Opt. Express 16 3362

    [21]

    Tromberg B J, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, Svaasand L, Butler J 2000 Neoplasia 2 26

  • [1] 徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东. 长红外双波长共聚焦超透镜设计研究. 物理学报, 2023, 72(1): 014208. doi: 10.7498/aps.72.20221752
    [2] 沈晓红, 曾盈莹, 毛琳, 朱仁江, 王涛, 罗海军, 佟存柱, 汪丽杰, 宋晏蓉, 张鹏. 双波长自锁模半导体薄片激光器. 物理学报, 2022, 71(20): 204202. doi: 10.7498/aps.71.20220483
    [3] 王浩, 曹珊珊, 苏俊豪, 徐海涛, 王震, 郑加金, 韦玮. 基于双包层光纤布拉格光栅传感器的锂电池组温度场监控. 物理学报, 2022, 71(10): 104207. doi: 10.7498/aps.71.20212302
    [4] 徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东. 简单结构超表面实现波长和偏振态同时复用全息显示新方法. 物理学报, 2021, 70(8): 084201. doi: 10.7498/aps.70.20201047
    [5] 赵顾颢, 毛少杰, 赵尚弘, 蒙文, 祝捷, 张小强, 王国栋, 谷文苑. 双旋光双反射结构的温度-辐射自稳定性原理和实验研究. 物理学报, 2019, 68(16): 164202. doi: 10.7498/aps.68.20190429
    [6] 窦微, 浦双双, 牛娜, 曲大鹏, 孟祥峻, 赵岭, 郑权. 双波长二极管合束端面抽运掺镨氟化钇锂单纵模360 nm紫外激光器. 物理学报, 2019, 68(5): 054202. doi: 10.7498/aps.68.20182018
    [7] 彭万敬, 刘鹏. 基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器. 物理学报, 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [8] 邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉. 双波长外腔面发射激光器. 物理学报, 2019, 68(11): 114204. doi: 10.7498/aps.68.20182261
    [9] 任秀云, 田兆硕, 孙兰君, 付石友. 激光波长对拉曼散射水温遥感系统测温精度及探测深度的影响. 物理学报, 2014, 63(16): 164209. doi: 10.7498/aps.63.164209
    [10] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控. 物理学报, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [11] 孙悟, 邓小玖, 李耀东, 张永明, 郑赛晶, 王维妙. 双波长抗干扰光电感烟探测机理. 物理学报, 2013, 62(3): 030201. doi: 10.7498/aps.62.030201
    [12] 杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏. 增益竞争双波长放大单频光纤放大器理论研究. 物理学报, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [13] 周勋, 杨再荣, 罗子江, 贺业全, 何浩, 韦俊, 邓朝勇, 丁召. 反射式高能电子衍射实时监控的分子束外延生长GaAs晶体衬底温度校准及表面相变的研究. 物理学报, 2011, 60(1): 016109. doi: 10.7498/aps.60.016109
    [14] 关宝璐, 郭霞, 张敬兰, 任秀娟, 郭帅, 李硕, 揣东旭, 沈光地. 双波长垂直腔面发射激光器及特性研究. 物理学报, 2011, 60(1): 014209. doi: 10.7498/aps.60.014209
    [15] 于晋龙, 罗俊, 韩丙辰, 郭精忠, 吴波, 王菊, 张晓媛, 杨恩泽. 基于光纤光参量放大的异步双波长全光再生技术研究. 物理学报, 2010, 59(9): 6138-6144. doi: 10.7498/aps.59.6138
    [16] 林燕凤, 张戈, 朱海永, 黄呈辉, 李爱红, 魏勇. Nd:YAG调Q激光器双波长振荡机理分析. 物理学报, 2009, 58(6): 3909-3914. doi: 10.7498/aps.58.3909
    [17] 毛庆和, 冯素娟, 蒋 建, 朱宗玖, 刘文清. 基于FLM的L波段双波长EDFL的双稳态变换. 物理学报, 2007, 56(1): 296-300. doi: 10.7498/aps.56.296
    [18] 顾晓玲, 郭 霞, 梁 庭, 林巧明, 郭 晶, 吴 迪, 徐丽华, 沈光地. GaN基双波长发光二极管电致发光谱特性研究. 物理学报, 2007, 56(9): 5531-5535. doi: 10.7498/aps.56.5531
    [19] 孙宏林, 张纲, 郭东耀. 双波长双相角结构不变量的比邻原理. 物理学报, 1989, 38(5): 824-828. doi: 10.7498/aps.38.824
    [20] 张幼文, 张才根. 用红外测温仪测定常温物体的比辐射率和辐射温度. 物理学报, 1980, 29(7): 829-835. doi: 10.7498/aps.29.829
计量
  • 文章访问数:  5460
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-09
  • 修回日期:  2017-04-01
  • 刊出日期:  2017-06-05

/

返回文章
返回