搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于综合特征的光纤周界安防系统 高效入侵事件识别

黄翔东 张皓杰 刘琨 马春宇 刘铁根

引用本文:
Citation:

基于综合特征的光纤周界安防系统 高效入侵事件识别

黄翔东, 张皓杰, 刘琨, 马春宇, 刘铁根

High-efficiency intrusion recognition by using synthesized features in optical fiber perimeter security system

Huang Xiang-Dong, Zhang Hao-Jie, Liu Kun, Ma Chun-Yu, Liu Tie-Gen
PDF
导出引用
  • 在光纤周界安防系统中,急需对入侵事件实现准确而高效的识别,对事件特征做简练而恰当的描述是其关键所在.本文提出一种基于综合特征的入侵事件识别方法,该方法引入全相位滤波器组将输入信号并行分解为多个频率通道,以提取这些通道的归一化功率值;进而与信号过零率相结合,构成包含时域信息、频域信息的综合特征向量;最后将该特征向量馈入径向基函数神经网络即可准确识别出攀爬、敲击、晃动、剪切四种常见的入侵动作.实验证明,本文方法相比于现有的经验模态分解方法,不仅提高了精度,而且显著加快了识别速度.
    In an optical fiber perimeter security system, due to the fact that a large quantity of samples are collected in the process of data acquisition, this heavy data burden inevitably degrades the efficiency and accuracy of intrusion recognition. Hence, it is urgent to remove the redundancy of the collected data records, which essentially requires to describe event features in a concise and proper way. In this paper, we propose a synthesized feature based intrusion recognition method, which is especially suitable to describing the fiber intrusion vibration signals with both wide bandwidth and high nonstationarity. Firstly, the all-phase filter bank characterized by large sidelobe attenuation and high flexibility of coefficient configuration, is employed to parallelly divide the input signal into multiple frequency channels, from which the power values can be accurately calculated. Secondly, the crossing rate of the input signal is combined with these power values to construct a synthetical feature vector, in which both the time-domain information and frequency-domain information are incorporated together. Finally, these synthetical feature vectors are fed into a radial-basis-function network based classifier to recognize 4 common intrusions (climbing, knocking, waggling and cutting). Essentially, the high efficiency of our proposed scheme lies in the parallel pipeline mode of the configurable filter bank and simple calculation of features, which facilitates speeding up the intrusion recognition. The high accuracy of our proposed scheme lies in two aspects: 1) the all-phase filter bank possesses small inter-channel interference, which helps to reduce the inter-coupling between output power values; 2) the synthesis of both frequency-domain information and time-domain information ensures the completeness of feature description. Experiments show that the sensing range of the proposed scheme can reach 2.25 km. Moreover, compared with the empirical mode decomposition based method, the proposed method not only improves the precision, but also significantly speeds up the recognition.
      通信作者: 刘琨, beiyangkl@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61671012,61475114)资助的课题.
      Corresponding author: Liu Kun, beiyangkl@tju.edu.cn
    [1]

    Rangaswamy S, van Doorn E 2012 US Patent 8 232 878

    [2]

    Girao P M B S, Postolache O A, Faria J A B, Pereira J M C D 2001 IEEE Sens. J. 1 322

    [3]

    Gong H, Song H, Zhang S 2014 IEEE Sens. J. 14 777

    [4]

    Yu S Y, Sun S L 2008 Laser Infrared 34 345 (in Chinese) [于胜云, 孙胜利 2008 激光与红外 34 345]

    [5]

    Fan Z M 2008 China Security Protection 3 42 (in Chinese) [樊治敏 2008 中国安防 3 42]

    [6]

    Sun Q Z, Liu D M, Liu H R, He Y, Yuan J G 2006 Proc. SPIE 6344 63440K

    [7]

    Sun Q Z, Liu D M, Liu H R, Shum P 2007 Proc. SPIE 6781 67814D

    [8]

    Xie S R, Zhang M, Lai S R, Liao Y B 2010 Proc. SPIE 7677 76770A

    [9]

    Jiang L H, Yang R Y 2012 J. Comput. 7 1453

    [10]

    Juarez J C, Maier E W, Choi K N, Taylor H F 2005 IEEE J. Lightw. Technol. 23 2081

    [11]

    Xie S R, Zou Q L, Wang L W, Zhang M, Li Y H, Liao Y B 2011 IEEE J. Lightw. Technol. 29 362

    [12]

    Huang X D, Yu J, Liu K, Liu T G, Chen Q N 2014 IEEE Photon. Technol. Lett. 26 1956

    [13]

    Liu L, Sun W, Zhou Y, Li Y, Zheng J, Ren B T 2014 Pattern Recognition (Berlin Heidelberg: Springer) pp595-603

    [14]

    Mahmoud S S, Visagathilagar Y, Katsifolis 2012 Photon. Sens. 2 225

    [15]

    Liu K, Tian M, Liu T G, Jiang J F, Ding Z Y, Chen Q N, Ma C Y, He C, Hu H F, Zhang X Z 2015 IEEE J. Lightw. Technol. 33 4885

    [16]

    Li K Y, Zhao X Q, Sun X H, Wan S R 2015 Acta Phys. Sin. 64 054304 (in Chinese) [李凯彦, 赵兴群, 孙小菡, 万遂人 2015 物理学报 64 054304]

    [17]

    Huang X D, Jing S X, Wang Z H, Xu Y, Zheng Y Q 2015 IEEE Trans. Signal Process. 64 1173

    [18]

    Wang Z H, Huang X D 2009 All Phase Spectrum Analysis and Filtering Technology of Digital Signal (Beijing: Publishing House of Electronics Industry) pp14-31 (in Chinese) [王兆华, 黄翔东 2009 数字信号全相位谱分析与滤波技术 (北京:电子工业出版社) 第14-31页]

    [19]

    Huang X D, Wang Y D, Liu K, Liu T G, Ma C Y, Chen Q N 2016 IEEE Photon. J. 8 1

    [20]

    Huan H X, Hien T T H, Tue H H 2011 IEEE Trans. Neural Netw. 22 982

    [21]

    Lyons W B, Ewald H, Lewis E 2002 J. Mater. Process. Technol. 127 23

    [22]

    Huang X D, Wang Y D, Liu K, Liu T G, Ma C Y, Tian M 2016 IEEE J. Lightw. Technol. 34 5049

  • [1]

    Rangaswamy S, van Doorn E 2012 US Patent 8 232 878

    [2]

    Girao P M B S, Postolache O A, Faria J A B, Pereira J M C D 2001 IEEE Sens. J. 1 322

    [3]

    Gong H, Song H, Zhang S 2014 IEEE Sens. J. 14 777

    [4]

    Yu S Y, Sun S L 2008 Laser Infrared 34 345 (in Chinese) [于胜云, 孙胜利 2008 激光与红外 34 345]

    [5]

    Fan Z M 2008 China Security Protection 3 42 (in Chinese) [樊治敏 2008 中国安防 3 42]

    [6]

    Sun Q Z, Liu D M, Liu H R, He Y, Yuan J G 2006 Proc. SPIE 6344 63440K

    [7]

    Sun Q Z, Liu D M, Liu H R, Shum P 2007 Proc. SPIE 6781 67814D

    [8]

    Xie S R, Zhang M, Lai S R, Liao Y B 2010 Proc. SPIE 7677 76770A

    [9]

    Jiang L H, Yang R Y 2012 J. Comput. 7 1453

    [10]

    Juarez J C, Maier E W, Choi K N, Taylor H F 2005 IEEE J. Lightw. Technol. 23 2081

    [11]

    Xie S R, Zou Q L, Wang L W, Zhang M, Li Y H, Liao Y B 2011 IEEE J. Lightw. Technol. 29 362

    [12]

    Huang X D, Yu J, Liu K, Liu T G, Chen Q N 2014 IEEE Photon. Technol. Lett. 26 1956

    [13]

    Liu L, Sun W, Zhou Y, Li Y, Zheng J, Ren B T 2014 Pattern Recognition (Berlin Heidelberg: Springer) pp595-603

    [14]

    Mahmoud S S, Visagathilagar Y, Katsifolis 2012 Photon. Sens. 2 225

    [15]

    Liu K, Tian M, Liu T G, Jiang J F, Ding Z Y, Chen Q N, Ma C Y, He C, Hu H F, Zhang X Z 2015 IEEE J. Lightw. Technol. 33 4885

    [16]

    Li K Y, Zhao X Q, Sun X H, Wan S R 2015 Acta Phys. Sin. 64 054304 (in Chinese) [李凯彦, 赵兴群, 孙小菡, 万遂人 2015 物理学报 64 054304]

    [17]

    Huang X D, Jing S X, Wang Z H, Xu Y, Zheng Y Q 2015 IEEE Trans. Signal Process. 64 1173

    [18]

    Wang Z H, Huang X D 2009 All Phase Spectrum Analysis and Filtering Technology of Digital Signal (Beijing: Publishing House of Electronics Industry) pp14-31 (in Chinese) [王兆华, 黄翔东 2009 数字信号全相位谱分析与滤波技术 (北京:电子工业出版社) 第14-31页]

    [19]

    Huang X D, Wang Y D, Liu K, Liu T G, Ma C Y, Chen Q N 2016 IEEE Photon. J. 8 1

    [20]

    Huan H X, Hien T T H, Tue H H 2011 IEEE Trans. Neural Netw. 22 982

    [21]

    Lyons W B, Ewald H, Lewis E 2002 J. Mater. Process. Technol. 127 23

    [22]

    Huang X D, Wang Y D, Liu K, Liu T G, Ma C Y, Tian M 2016 IEEE J. Lightw. Technol. 34 5049

  • [1] 彭万敬, 刘鹏. 基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器. 物理学报, 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [2] 李凯彦, 赵兴群, 孙小菡, 万遂人. 一种用于光纤链路振动信号模式识别的规整化复合特征提取方法. 物理学报, 2015, 64(5): 054304. doi: 10.7498/aps.64.054304
    [3] 刘超, 裴丽, 吴良英, 王一群, 翁思俊, 余少伟. 基于光纤叠栅的全光纤声光可调谐滤波器的特性分析. 物理学报, 2015, 64(17): 174207. doi: 10.7498/aps.64.174207
    [4] 尹彬, 柏云龙, 齐艳辉, 冯素春, 简水生. 拉锥型啁啾光纤光栅滤波器的研究. 物理学报, 2013, 62(21): 214213. doi: 10.7498/aps.62.214213
    [5] 张斌, 潘雪丰, 陶卫东. 新型内反射旋光光学滤波器研究. 物理学报, 2011, 60(5): 054214. doi: 10.7498/aps.60.054214
    [6] 陈鹤鸣, 孟晴. 高效光子晶体太赫兹滤波器的设计. 物理学报, 2011, 60(1): 014202. doi: 10.7498/aps.60.014202
    [7] 侯威, 章大全, 钱忠华, 封国林. 基于随机重排去趋势波动分析的极端低温事件研究及其综合指标的建立. 物理学报, 2011, 60(10): 109203. doi: 10.7498/aps.60.109203
    [8] 张攀政, 范薇, 汪小超, 林尊琪. 利用光谱滤波器实现自启动的全光纤超短脉冲掺Yb3+光纤激光器. 物理学报, 2011, 60(2): 024206. doi: 10.7498/aps.60.024206
    [9] 江微微, 范林勇, 赵瑞峰, 卫延, 裴丽, 简水生. 基于双芯光纤耦合器的梳状滤波器及其CO2激光调节. 物理学报, 2011, 60(4): 044214. doi: 10.7498/aps.60.044214
    [10] 朱志宇, 杨官校. 基于Stiefel流形的粒子滤波器研究. 物理学报, 2010, 59(12): 8316-8321. doi: 10.7498/aps.59.8316
    [11] 宁小磊, 王宏力, 张琪, 陈连华. 区间衍生粒子滤波器. 物理学报, 2010, 59(7): 4426-4433. doi: 10.7498/aps.59.4426
    [12] 薛晖, 郑臻荣, 顾培夫, 张锦龙, 沈伟东, 陈海星. 一种新型的低角度效应的滤波器. 物理学报, 2009, 58(6): 3983-3987. doi: 10.7498/aps.58.3983
    [13] 麻健勇, 刘世杰, 魏朝阳, 许 程, 晋云霞, 赵元安, 邵建达, 范正修. 反射型导模共振滤波器设计. 物理学报, 2008, 57(2): 827-832. doi: 10.7498/aps.57.827
    [14] 杜正聪, 唐 斌, 李 可. 混合退火粒子滤波器. 物理学报, 2006, 55(3): 999-1004. doi: 10.7498/aps.55.999
    [15] 董小伟, 裴 丽, 简水生. 非对称熔锥法制作光纤光栅辅助耦合器型上下话路滤波器. 物理学报, 2006, 55(9): 4739-4743. doi: 10.7498/aps.55.4739
    [16] 曹 辉, 孙军强, 张新亮, 肖凌燕, 黄德修. 一种新颖的超结构光纤Bragg光栅梳状滤波器的设计. 物理学报, 2004, 53(9): 3077-3082. doi: 10.7498/aps.53.3077
    [17] 刘海文, 孙晓玮, 李征帆, 钱 蓉, 周 旻. 基于分形特征和双层光子带隙结构的宽阻带低通滤波器. 物理学报, 2003, 52(12): 3082-3086. doi: 10.7498/aps.52.3082
    [18] 顾本源, 董碧珍, 郑师海, 杨国桢. 空间平移不变和角度受限下转动不变的特征识别与滤波器的设计. 物理学报, 1985, 34(6): 760-765. doi: 10.7498/aps.34.760
    [19] 朱物华, 张仲桂. 频带滤波器之瞬流. 物理学报, 1937, 3(1): 39-50. doi: 10.7498/aps.3.39
    [20] 朱物华, 张仲桂. 低频滤波器之瞬流. 物理学报, 1936, 2(1): 76-105. doi: 10.7498/aps.2.76
计量
  • 文章访问数:  4684
  • PDF下载量:  233
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-24
  • 修回日期:  2017-03-29
  • 刊出日期:  2017-06-05

/

返回文章
返回