搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于增益光纤长度优化的双波长运转掺铒光纤锁模激光器

石俊凯 纪荣祎 黎尧 刘娅 周维虎

引用本文:
Citation:

基于增益光纤长度优化的双波长运转掺铒光纤锁模激光器

石俊凯, 纪荣祎, 黎尧, 刘娅, 周维虎

Dual-wavelength mode-locked Er-doped fiber laser based on optimizing gain fiber length

Shi Jun-Kai, Ji Rong-Yi, Li Yao, Liu Ya, Zhou Wei-Hu
PDF
导出引用
  • 构建了可自启动的双波长运转掺铒光纤锁模激光器.通过优化增益光纤长度,利用掺铒光纤在1530 nm附近的再吸收效应调节激光器的增益谱,使激光器在1530 nm和1560 nm附近具有相同的增益强度.实验中采用31 cm掺铒光纤作为增益光纤,以透射式半导体可饱和吸收体作为锁模器件,实现了自启动双波长锁模运转.激光器锁模输出重复频率为58.01 MHz,信噪比为58.2 dB,最高输出功率为4.8 mW.锁模输出的光谱在1532.4 nm和1552.3 nm处具有两个强度接近的谱峰,谱峰间距约为20 nm.该激光器无需手动调节即可实现双波长运转,更便于实际使用.
    Recently,multi-wavelength pulsed lasers have become a research hotspot due to their versatile applications,such as precision spectroscopy,microwave/terahertz photonics,optical signal processing,and wavelength division multiplexed optical fiber communication systems.As a promising candidate,passively mode-locked fiber laser has the advantages of ultrashort pulse,ultrahigh peak power,compact structure and low-cost.In the existing multi-wavelength passively mode-locked fiber lasers,multi-wavelength mode-locked operation is achieved by adjusting the intracavity modulators to a proper state after laser has worked.It is inconvenient for practical use,so,its application scope is restricted.In this paper,a new method to achieve dual-wavelength mode-locked operation in an erbium-doped fiber laser is proposed. For an erbium-doped fiber,the peaks of both absorption and emission spectra overlap in the 1530 nm-region.So the emission light in the 1530 nm-region will be re-absorbed by the erbium-doped fiber with low pump power or long gain fiber.Utilizing the emission re-absorption effect,the gain spectrum can be modified by different lengths of gain fiber. In the experiment,an all-fiber ring cavity is adopted and a transmission-type semiconductor saturable absorber is used as a modelocker.The cavity consists of ~3.2-m-long single mode fiber and an erbium-doped fiber.Gain fibers with different lengths are used in the cavity to reveal the dependence of emission re-absorption on both gain spectrum and mode-locked output spectrum.According to the experimental results,there are two humps in the amplified spontaneous emission spectrum located in the 1530 nm-region and 1560 nm-region,respectively.With the gain fiber length increasing, gain spectrum in the 1530 nm-region is suppressed,and gain intensity in the 1560 nm-region gradually surpasses that in the 1530 nm-region.Based on the experimental results,self-starting dual-wavelength mode-locked operation is achieved with a 31-cm-long gain fiber.The two spectral peaks with close intensity are located at 1532.4 nm and 1552.3 nm, respectively.The maximum output power is 4.8 mW at a repetition rate of 58.01 MHz and a signal-to-noise ratio of 58.2 dB.This self-starting dual-wavelength mode-locked erbium-doped fiber laser is convenient for practical use and can meet the requirements for many potential applications.
      通信作者: 周维虎, zhouweihu@aoe.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61475162)、中国科学院国际合作局对外合作重点项目(批准号:181811KYSB20160029)、中国科学院前沿科学重点研究项目(批准号:QYZDY-SSW-JSC008)和国家重大科学仪器设备专项(批准号:2011YQ120022,2014YQ090709)资助的课题.
      Corresponding author: Zhou Wei-Hu, zhouweihu@aoe.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.61475162),the Key Project of Bureau of International Co-operation,Chinese Academy of Sciences (Grant No.181811KYSB20160029),the Key Research Project of Bureau of Frontier Sciences and Education,Chinese Academy of Sciences (Grant No.QYZDY-SSW-JSC008),and the National Key Scientific Instruments and Equipment Development of China (Grant Nos.2011YQ120022,2014YQ090709).
    [1]

    Zhao X, Zheng Z, Liu L, Liu Y, Jiang Y, Yang X, Zhu J 2011 Opt. Express 19 1168

    [2]

    Huang S, Wang Y, Yan P, Zhao J, Li H, Lin R 2014 Opt. Express 22 11417

    [3]

    Zhang Z, Yagi T 1993 Opt. Lett. 18 2126

    [4]

    Zhu C, He J, Wang S 2005 Opt. Lett. 30 561

    [5]

    Xie G Q, Tang D Y, Luo H, Zhang H J, Yu H H, Wang J Y, Tao X T, Jiang M H, Qian L J 2008 Opt. Lett. 33 1872

    [6]

    Yoshioka H, Nakamura S, Ogawa T, Wada S 2010 Opt. Express 18 1479

    [7]

    Schlager J B, Kawanishi S, Saruwatari M 1991 Electron. Lett. 27 2072

    [8]

    Town G E, Chen L, Smith P W E 2000 IEEE Photon. Technol. Lett. 12 1459

    [9]

    Chen Z, Sun H, Ma S, Dutta N K 2008 IEEE Photon. Technol. Lett. 20 2066

    [10]

    Dong H, Zhu G H, Wang Q, Sun H, Dutta N K 2004 Opt. Express 12 4297

    [11]

    Yao J, Yao J, Wang Y, Tjin S C, Zhou Y, Lam Y L, Liu J, Lu C 2001 Opt. Commun. 191 341

    [12]

    Xu Z W, Zhang Z X 2013 Acta Phys. Sin. 62 104210 (in Chinese)[徐中巍, 张祖兴 2013 物理学报 62 104210]

    [13]

    Yun L, Liu X, Mao D 2012 Opt. Express 20 20992

    [14]

    Zhang H, Tang D, Wu X, Zhao L M 2009 Opt. Express 17 12692

    [15]

    Zhang Z X, Xu Z W, Zhang L 2012 Opt. Express 20 26736

    [16]

    Zhang C, Luo Z Q, Wang J Z, Zhou M, Xu H Y, Cai Z P 2012 Chin. J. Lasers 39 25 (in Chinese)[张成, 罗正钱, 王金章, 周敏, 许惠英, 蔡志平 2012 中国激光 39 25]

    [17]

    Liu M, Zhao N, Liu H, Zheng X W, Luo A P, Luo Z C, Xu W C, Zhao C J, Zhang H, Wen S C 2014 IEEE Photon. Technol. Lett. 26 983

    [18]

    Desurvire E, Simpson J R 1989 J. Lightwave Technol. 7 835

    [19]

    Desurvire E, Zirngibl M, Presby H M, DiGiovanni D 1991 IEEE Photon. Technol. Lett. 3 127

    [20]

    Komarov A, Leblond H, Sanchez F 2005 Phys. Rev. A 71 053809

  • [1]

    Zhao X, Zheng Z, Liu L, Liu Y, Jiang Y, Yang X, Zhu J 2011 Opt. Express 19 1168

    [2]

    Huang S, Wang Y, Yan P, Zhao J, Li H, Lin R 2014 Opt. Express 22 11417

    [3]

    Zhang Z, Yagi T 1993 Opt. Lett. 18 2126

    [4]

    Zhu C, He J, Wang S 2005 Opt. Lett. 30 561

    [5]

    Xie G Q, Tang D Y, Luo H, Zhang H J, Yu H H, Wang J Y, Tao X T, Jiang M H, Qian L J 2008 Opt. Lett. 33 1872

    [6]

    Yoshioka H, Nakamura S, Ogawa T, Wada S 2010 Opt. Express 18 1479

    [7]

    Schlager J B, Kawanishi S, Saruwatari M 1991 Electron. Lett. 27 2072

    [8]

    Town G E, Chen L, Smith P W E 2000 IEEE Photon. Technol. Lett. 12 1459

    [9]

    Chen Z, Sun H, Ma S, Dutta N K 2008 IEEE Photon. Technol. Lett. 20 2066

    [10]

    Dong H, Zhu G H, Wang Q, Sun H, Dutta N K 2004 Opt. Express 12 4297

    [11]

    Yao J, Yao J, Wang Y, Tjin S C, Zhou Y, Lam Y L, Liu J, Lu C 2001 Opt. Commun. 191 341

    [12]

    Xu Z W, Zhang Z X 2013 Acta Phys. Sin. 62 104210 (in Chinese)[徐中巍, 张祖兴 2013 物理学报 62 104210]

    [13]

    Yun L, Liu X, Mao D 2012 Opt. Express 20 20992

    [14]

    Zhang H, Tang D, Wu X, Zhao L M 2009 Opt. Express 17 12692

    [15]

    Zhang Z X, Xu Z W, Zhang L 2012 Opt. Express 20 26736

    [16]

    Zhang C, Luo Z Q, Wang J Z, Zhou M, Xu H Y, Cai Z P 2012 Chin. J. Lasers 39 25 (in Chinese)[张成, 罗正钱, 王金章, 周敏, 许惠英, 蔡志平 2012 中国激光 39 25]

    [17]

    Liu M, Zhao N, Liu H, Zheng X W, Luo A P, Luo Z C, Xu W C, Zhao C J, Zhang H, Wen S C 2014 IEEE Photon. Technol. Lett. 26 983

    [18]

    Desurvire E, Simpson J R 1989 J. Lightwave Technol. 7 835

    [19]

    Desurvire E, Zirngibl M, Presby H M, DiGiovanni D 1991 IEEE Photon. Technol. Lett. 3 127

    [20]

    Komarov A, Leblond H, Sanchez F 2005 Phys. Rev. A 71 053809

  • [1] 杨亚涛, 邹媛, 曾琼, 宋宇锋, 王可, 王振洪. 多孤子和类噪声脉冲共存的锁模光纤激光器. 物理学报, 2022, 71(13): 134205. doi: 10.7498/aps.71.20220250
    [2] 沈晓红, 曾盈莹, 毛琳, 朱仁江, 王涛, 罗海军, 佟存柱, 汪丽杰, 宋晏蓉, 张鹏. 双波长自锁模半导体薄片激光器. 物理学报, 2022, 71(20): 204202. doi: 10.7498/aps.71.20220483
    [3] 饶冰洁, 张攀, 李铭坤, 杨西光, 闫露露, 陈鑫, 张首刚, 张颜艳, 姜海峰. 用于光腔衰荡光谱测量的多支路掺铒光纤飞秒光梳系统. 物理学报, 2022, 71(8): 084203. doi: 10.7498/aps.71.20212162
    [4] 俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴. MnPS3可饱和吸收体被动锁模掺铒光纤激光器双波长激光. 物理学报, 2020, 69(18): 184208. doi: 10.7498/aps.69.20200342
    [5] 石俊凯, 王国名, 黎尧, 高书苑, 刘立拓, 周维虎. 滤波对8字腔掺铒光纤激光器锁模运转的影响. 物理学报, 2019, 68(6): 064206. doi: 10.7498/aps.68.20182144
    [6] 张攀政, 汪小超, 李菁辉, 冯滔, 张志祥, 范薇, 周申蕾, 马伟新, 朱俭, 林尊琪. 利用啁啾脉冲光谱滤波和非线性偏振旋转技术实现高稳定性和开机自启动的全光纤掺Yb3+光纤锁模激光器. 物理学报, 2016, 65(21): 214207. doi: 10.7498/aps.65.214207
    [7] 王玉宝, 齐晓辉, 沈阳, 姚繄蕾, 徐志敬, 潘玉寨. 超长腔碳纳米管锁模多波长掺镱光纤激光器. 物理学报, 2015, 64(20): 204205. doi: 10.7498/aps.64.204205
    [8] 徐中巍, 张祖兴. 全正色散多波长被动锁模耗散孤子掺镱光纤激光器. 物理学报, 2013, 62(10): 104210. doi: 10.7498/aps.62.104210
    [9] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [10] 张攀政, 范薇, 汪小超, 林尊琪. 利用光谱滤波器实现自启动的全光纤超短脉冲掺Yb3+光纤激光器. 物理学报, 2011, 60(2): 024206. doi: 10.7498/aps.60.024206
    [11] 宋有建, 胡明列, 谢辰, 柴路, 王清月. 输出近百纳焦耳脉冲能量的光子晶体光纤锁模激光器. 物理学报, 2010, 59(10): 7105-7110. doi: 10.7498/aps.59.7105
    [12] 张鑫, 胡明列, 宋有健, 柴路, 王清月. 大模场面积光子晶体光纤耗散孤子锁模激光器. 物理学报, 2010, 59(3): 1863-1869. doi: 10.7498/aps.59.1863
    [13] 邓一鑫, 涂成厚, 吕福云. 非线性偏振旋转锁模自相似脉冲光纤激光器的研究. 物理学报, 2009, 58(5): 3173-3178. doi: 10.7498/aps.58.3173
    [14] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [15] 宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月. 掺Yb3+双包层大模场面积光纤锁模激光器. 物理学报, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
    [16] 周斌斌, 张 炜, 詹敏杰, 魏志义. Gires-Tournois干涉镜补偿色散的自启动飞秒Cr4+:YAG激光器实验研究. 物理学报, 2008, 57(3): 1742-1745. doi: 10.7498/aps.57.1742
    [17] 张晓华, 张光寅, 焦志勇, 顾学文, 颜彩繁, 武丁二, 柴 路, 曹士英. 钛宝石飞秒激光器的锁模机理探讨. 物理学报, 2005, 54(3): 1213-1217. doi: 10.7498/aps.54.1213
    [18] 王屹山, 刘红军, 程 昭, 赵 卫, 王勇刚, 马骁宇, 张志刚. 利用SBR实现自启动锁模钛宝石飞秒激光脉冲的产生. 物理学报, 2005, 54(11): 5184-5188. doi: 10.7498/aps.54.5184
    [19] 陆宏. 飞秒锁模固态激光器中放大的自发辐射导致的时基抖动. 物理学报, 2001, 50(5): 875-879. doi: 10.7498/aps.50.875
    [20] 朱振和, 霍崇儒. 被动锁模激光器涨落模型的改进. 物理学报, 1981, 30(2): 178-188. doi: 10.7498/aps.30.178
计量
  • 文章访问数:  4693
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-22
  • 修回日期:  2017-04-28
  • 刊出日期:  2017-07-05

/

返回文章
返回