搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非真空传输的高效交叉偏振滤波设计与产生

李荣凤 薛兴泰 赵研英 耿易星 卢海洋 颜学庆 陈佳洱

引用本文:
Citation:

非真空传输的高效交叉偏振滤波设计与产生

李荣凤, 薛兴泰, 赵研英, 耿易星, 卢海洋, 颜学庆, 陈佳洱

High efficiency cross-polarized wave filter for non-vacuum transmission

Li Rong-Feng, Xue Xing-Tai, Zhao Yan-Ying, Geng Yi-Xing, Lu Hai-Yang, Yan Xue-Qing, Chen Jia-Er
PDF
导出引用
  • 采用常规透镜设计了适用于非真空环境中交叉偏振波(XPW)产生的双透镜聚焦系统,在相对较短的距离实现了长焦透镜聚焦的效果,并测量了聚焦后的激光脉冲,发现其没有显著的非线性相位积累,保证了激光光束质量.在非真空中采用双BaF2晶体得到了XPW系统转换效率22%,光谱1.78倍展宽的净化脉冲输出,双透镜组合聚焦形式使得双BaF2晶体间距在1322 cm内可保证20%以上的XPW转换效率,双晶体间距的调节冗余度提高了两个量级,极大地降低了双晶转换效率对晶体间距的依赖.这种正负透镜组合聚焦的光路设计在非真空中实现了高效稳定的XPW输出,为后续的放大应用提供了高对比度、宽光谱的高质量种子源.
    Development of high-peak power laser system encounters difficulties in producing the pulses with high temporal contrast. To increase the pulse temporal contrast ratio, a nonlinear filter based on crossed-polarized wave (XPW) generation is proposed. The XPW generation relies on a third-order nonlinear process occurring in a nonlinear medium, such as barium fluorite (BaF2) crystal. The XPW process is quite straightforward:a linearly polarized laser pulse is focused on BaF2 crystal positioned between two orthogonally polarizers, high power main pulses due to nonlinear polarization rotation can pass through the second polarizer, while low power unconverted pre-and post-pulses are filtered by the second polarizer. With the XPW technique, pulse contrast can be enhanced by several orders of magnitude. Furthermore, XPW spectrum can be broaden by a factor with respect to the initial spectrum. This efficient pulse cleaner presents many advantages and has proved to be a simple and reliable pulse filter operating in a double chirped pulse amplification system. Most of previous XPW experiments utilize short focal systems or work off focus due to an intensity limit in the crystal (BaF2). These drawbacks result in a lower conversion efficiency (lower than 10%) when using a single crystal. Dual crystal setup is capable of achieving efficiency more than 20%, yet the configuration restricts the crystal separation to a millimeter level. The use of long focus lens in the XPW device is capable of reaching higher efficiency, with BaF2 crystal positioned in the focal plane. Hence for milljoule pulses, the setup distance increases to tens of meters, resulting in a complicated system and cumbersome configuration. Considering these limitations, a compact, highly efficient and stable XPW generation using dual-lens system suitable for non-vacuum transmission is presented. The measured nonlinear accumulated phase shows little deterioration of pulse quality. With a compact dual lens system, we realize an excellent XPW conversion of above 22% (internal efficiency of 30%) with using double BaF2 crystals, while a femtosecond laser pulse can experience a spectrum broadening up to a factor of 1.78. The dual-lens configuration overcomes the crystal separation limit, and conversion efficiency exceeds 20% for a crystal separation from 13 cm to 22 cm, which is conducible to flexibility and robustness. The stability for the setup to generate shorter pulses with very high contrast or compensate for spectral gain narrowing in the preamplifier is ensured due to the dual-lens focusing system.
      通信作者: 赵研英, zhaoyanying@pku.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11504009)和国家重大科学仪器设备开发专项(专项号:2012YQ030142)资助的课题.
      Corresponding author: Zhao Yan-Ying, zhaoyanying@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11504009) and the National Grand Instrument Project,China (Grant No.2012YQ030142).
    [1]

    Petrov G I, Albert O, Etchepare J, Saltiel S M 2001 Opt. Lett. 26 355

    [2]

    Minkovski N, Saltiel S M, Petrov G I, Albert O, Etchepare J 2002 Opt. Lett. 27 2025

    [3]

    Jullien A, Albert O, Burgy F, Hamoniaux G, Rousseau J P, Chambaret J P, Augé-Rochereau F, Chériaux G, and Etchepare J 2005 Opt. Lett. 30 920

    [4]

    Jullien A, Rousseau J P, Mercier B, Antonucci L, Albert O, Chériaux G, Kourtev S, Minkovski N, Saltiel S M 2008 Opt. Lett. 33 2353

    [5]

    Antonucci L, Rousseau J P, Jullien A, Mercier B, Laude V, Cheriaux G 2009 Opt. Commun. 282 1374

    [6]

    Qin S, Wang Z H, Yang S S, Shen Z W, Dong Q L, Wei Z Y 2017 Chin. Phys. Lett. 34 024205

    [7]

    Xu Y, Leng Y X, Guo X Y, Zou X, Li Y Y, Lu X M, Wang C, Liu Y Q, Liang X Y, Li R X 2014 Opt. Commun. 313 175

    [8]

    Li Y Y, Guo X Y, Zou X, Xu Y, Leng Y X 2014 Opt. Laser Technol. 57 165

    [9]

    Cotel A, Jullien A, Forget N, Albert O, Chériaux G, Le Blanc C 2006 Appl. Phys. B 83 7

    [10]

    Chu Y X, Liang X Y, Yu L H, Xu Y, Xu L, Ma L, Lu X M, Liu Y Q, Leng Y X, Li R X, Xu Z Z 2013 Opt. Express 21 29231

    [11]

    Geng Y X, Li R F, Zhao Y Y, Wang D H, Lu H Y, Yan X Q 2017 Acta Phys. Sin. 66 040601 (in Chinese) [耿易星, 李荣凤, 赵研英, 王大辉, 卢海洋, 颜学庆 2017 物理学报 66 040601]

    [12]

    Jullien A, Albert O, Chériaux G, Etchepare J, Kourtev S, Minkovski N, Saltiel S M 2005 J. Opt. Soc. Am. B 22 2635

    [13]

    Ramirez L P, Papadopoulos D, Hanna M, Pellegrina A, Friebel F, Georges P, Druon F 2013 J. Opt. Soc. Am. B 30 2607

    [14]

    Jullien A, Kourtev S, Albert O, Chériaux G, Etchepare J, Minkovski N, Saltiel S M 2006 Appl. Phys. B 84 409

    [15]

    Ricci A, Jullien A, Rousseau J P, Liu Y, Houard A, Ramirez P, Papadopoulos D, Pellegrina A, Georges P, Druon F, Forget N, Lopez-Martens R 2013 Rev. Sci. Instrum. 84 043106

    [16]

    Canova L, Kourtev S, Minkovski N, Lopez-Martens R, Albert O, Saltiel S M 2008 Opt. Lett. 33 2299

    [17]

    Liu C, Wang Z H, Li W C, Liu F, Wei Z Y 2010 Acta Phys. Sin. 59 7036 (in Chinese) [刘成, 王兆华, 李伟昌, 刘峰, 魏志义 2010 物理学报 59 7036]

    [18]

    Wang J Z, Huang Y S, Xu Y, Li Y Y, Lu X M, Leng Y X 2012 Acta Phys. Sin. 61 94214 (in Chinese) [王建州, 黄延穗, 许毅, 李妍妍, 陆效明, 冷雨欣 2012 物理学报 61 94214]

    [19]

    Konoplev O A, Meyerhofter D D 1998 IEEE J. Sel. Top. Quantum Electron. 4 459

    [20]

    Jullien A, Albert O, Chériaux G, Etchepare J, Kourtev S, Minkovski N, Saltiel S M 2006 Opt. Express 14 2760

    [21]

    Ricci A, Jullien A, Forget N, Crozatier V, Tournois P, Lopezmartens R 2012 Opt. Lett. 37 1196

    [22]

    Minkovski N, Petrov G I, Saltiel S M, Albert O, Etchepare J 2004 J. Opt. Soc. Am. B 21 160

    [23]

    Jullien A, Durfee C G, Trisorio A, Canova L, Rousseau J P, Mercier B, Antonucci L, Chériaux G, Albert O, Lopez-Martens R 2009 Appl. Phys. B 96 293

  • [1]

    Petrov G I, Albert O, Etchepare J, Saltiel S M 2001 Opt. Lett. 26 355

    [2]

    Minkovski N, Saltiel S M, Petrov G I, Albert O, Etchepare J 2002 Opt. Lett. 27 2025

    [3]

    Jullien A, Albert O, Burgy F, Hamoniaux G, Rousseau J P, Chambaret J P, Augé-Rochereau F, Chériaux G, and Etchepare J 2005 Opt. Lett. 30 920

    [4]

    Jullien A, Rousseau J P, Mercier B, Antonucci L, Albert O, Chériaux G, Kourtev S, Minkovski N, Saltiel S M 2008 Opt. Lett. 33 2353

    [5]

    Antonucci L, Rousseau J P, Jullien A, Mercier B, Laude V, Cheriaux G 2009 Opt. Commun. 282 1374

    [6]

    Qin S, Wang Z H, Yang S S, Shen Z W, Dong Q L, Wei Z Y 2017 Chin. Phys. Lett. 34 024205

    [7]

    Xu Y, Leng Y X, Guo X Y, Zou X, Li Y Y, Lu X M, Wang C, Liu Y Q, Liang X Y, Li R X 2014 Opt. Commun. 313 175

    [8]

    Li Y Y, Guo X Y, Zou X, Xu Y, Leng Y X 2014 Opt. Laser Technol. 57 165

    [9]

    Cotel A, Jullien A, Forget N, Albert O, Chériaux G, Le Blanc C 2006 Appl. Phys. B 83 7

    [10]

    Chu Y X, Liang X Y, Yu L H, Xu Y, Xu L, Ma L, Lu X M, Liu Y Q, Leng Y X, Li R X, Xu Z Z 2013 Opt. Express 21 29231

    [11]

    Geng Y X, Li R F, Zhao Y Y, Wang D H, Lu H Y, Yan X Q 2017 Acta Phys. Sin. 66 040601 (in Chinese) [耿易星, 李荣凤, 赵研英, 王大辉, 卢海洋, 颜学庆 2017 物理学报 66 040601]

    [12]

    Jullien A, Albert O, Chériaux G, Etchepare J, Kourtev S, Minkovski N, Saltiel S M 2005 J. Opt. Soc. Am. B 22 2635

    [13]

    Ramirez L P, Papadopoulos D, Hanna M, Pellegrina A, Friebel F, Georges P, Druon F 2013 J. Opt. Soc. Am. B 30 2607

    [14]

    Jullien A, Kourtev S, Albert O, Chériaux G, Etchepare J, Minkovski N, Saltiel S M 2006 Appl. Phys. B 84 409

    [15]

    Ricci A, Jullien A, Rousseau J P, Liu Y, Houard A, Ramirez P, Papadopoulos D, Pellegrina A, Georges P, Druon F, Forget N, Lopez-Martens R 2013 Rev. Sci. Instrum. 84 043106

    [16]

    Canova L, Kourtev S, Minkovski N, Lopez-Martens R, Albert O, Saltiel S M 2008 Opt. Lett. 33 2299

    [17]

    Liu C, Wang Z H, Li W C, Liu F, Wei Z Y 2010 Acta Phys. Sin. 59 7036 (in Chinese) [刘成, 王兆华, 李伟昌, 刘峰, 魏志义 2010 物理学报 59 7036]

    [18]

    Wang J Z, Huang Y S, Xu Y, Li Y Y, Lu X M, Leng Y X 2012 Acta Phys. Sin. 61 94214 (in Chinese) [王建州, 黄延穗, 许毅, 李妍妍, 陆效明, 冷雨欣 2012 物理学报 61 94214]

    [19]

    Konoplev O A, Meyerhofter D D 1998 IEEE J. Sel. Top. Quantum Electron. 4 459

    [20]

    Jullien A, Albert O, Chériaux G, Etchepare J, Kourtev S, Minkovski N, Saltiel S M 2006 Opt. Express 14 2760

    [21]

    Ricci A, Jullien A, Forget N, Crozatier V, Tournois P, Lopezmartens R 2012 Opt. Lett. 37 1196

    [22]

    Minkovski N, Petrov G I, Saltiel S M, Albert O, Etchepare J 2004 J. Opt. Soc. Am. B 21 160

    [23]

    Jullien A, Durfee C G, Trisorio A, Canova L, Rousseau J P, Mercier B, Antonucci L, Chériaux G, Albert O, Lopez-Martens R 2009 Appl. Phys. B 96 293

  • [1] 葛振杰, 苏旭, 白丽华. 反旋双色椭圆偏振激光场中Ar原子的非序列双电离. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231583
    [2] 李妤晨, 陈航宇, 宋建军. 用于提高微波无线能量传输系统接收端能量转换效率的肖特基二极管. 物理学报, 2020, 69(10): 108401. doi: 10.7498/aps.69.20191415
    [3] 彭万敬, 刘鹏. 基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器. 物理学报, 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [4] 延明月, 张旭, 刘晨昊, 黄仁忠, 高天附, 郑志刚. 反馈脉冲棘轮的能量转化效率研究. 物理学报, 2018, 67(19): 190501. doi: 10.7498/aps.67.20181066
    [5] 刘丽娟, 孔晓波, 刘永刚, 宣丽. 基于液晶/聚合物光栅的高转化效率有机半导体激光器. 物理学报, 2017, 66(24): 244204. doi: 10.7498/aps.66.244204
    [6] 耿易星, 李荣凤, 赵研英, 王大辉, 卢海洋, 颜学庆. 色散对双晶交叉偏振滤波输出特性的影响. 物理学报, 2017, 66(4): 040601. doi: 10.7498/aps.66.040601
    [7] 赵岫鸟, 孙建安, 豆福全. 外场形式对超冷原子-多聚物分子转化效率的影响. 物理学报, 2014, 63(22): 220302. doi: 10.7498/aps.63.220302
    [8] 余本海, 李盈傧. 椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖. 物理学报, 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [9] 罗幸, 周新星, 罗海陆, 文双春. 光自旋霍尔效应中的交叉偏振特性研究. 物理学报, 2012, 61(19): 194202. doi: 10.7498/aps.61.194202
    [10] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离. 物理学报, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [11] 李冠强, 彭娉, 曹振洲, 薛具奎. 超冷原子向异核四聚物分子A3B的绝热转化. 物理学报, 2012, 61(9): 090301. doi: 10.7498/aps.61.090301
    [12] 李博, 谭中伟, 张晓兴. 利用电光相位调制和交叉相位调制制作时间透镜的实验及仿真分析. 物理学报, 2011, 60(8): 084204. doi: 10.7498/aps.60.084204
    [13] 姜文龙, 孟昭晖, 丛林, 汪津, 王立忠, 韩强, 孟凡超, 高永慧. 双量子阱结构OLED效率和电流的磁效应. 物理学报, 2010, 59(9): 6642-6646. doi: 10.7498/aps.59.6642
    [14] 刘成, 王兆华, 李伟昌, 刘峰, 魏志义. 交叉偏振滤波技术提高飞秒超强激光信噪比的研究. 物理学报, 2010, 59(10): 7036-7040. doi: 10.7498/aps.59.7036
    [15] 洪伟毅, 杨振宇, 兰鹏飞, 张庆斌, 李钱光, 陆培祥. 非平行偏振双色场驱动产生脉宽稳定的单个宽谱阿秒脉冲. 物理学报, 2009, 58(7): 4914-4919. doi: 10.7498/aps.58.4914
    [16] 张春丽, 祁月盈, 刘学深, 丁培柱. 双色场中高次谐波转化效率提高的数值研究. 物理学报, 2009, 58(5): 3078-3083. doi: 10.7498/aps.58.3078
    [17] 张春丽, 祁月盈, 刘学深, 丁培柱. 双色激光场中高次谐波转化效率的提高. 物理学报, 2007, 56(2): 774-780. doi: 10.7498/aps.56.774
    [18] 冯勋立, 徐至展, 夏宇兴. 压缩真空态光场抽运的双光子激光. 物理学报, 2000, 49(2): 235-240. doi: 10.7498/aps.49.235
    [19] 何林生, 冯勋立, 吴世雄, 张智明, 夏宇兴. 压缩真空库场中二能级原子的非简并双光子荧光谱. 物理学报, 1998, 47(2): 219-231. doi: 10.7498/aps.47.219
    [20] 张宗燧. 具有交叉对称的李模型下的非弹性振幅. 物理学报, 1964, 20(11): 1090-1100. doi: 10.7498/aps.20.1090
计量
  • 文章访问数:  5039
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-12
  • 修回日期:  2017-05-21
  • 刊出日期:  2017-08-05

/

返回文章
返回