搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于谱域相位分辨光学相干层析的纳米级表面形貌成像

王毅 郭哲 朱立达 周红仙 马振鹤

引用本文:
Citation:

基于谱域相位分辨光学相干层析的纳米级表面形貌成像

王毅, 郭哲, 朱立达, 周红仙, 马振鹤

Nanoscale surface topography imaging using phase-resolved spectral domain optical coherence tomography

Wang Yi, Guo Zhe, Zhu Li-Da, Zhou Hong-Xian, Ma Zhen-He
PDF
导出引用
  • 提出了一种基于谱域相位分辨光学相干层析的纳米级表面形貌成像方法,由干涉光谱计算样品相邻两点的相位差,得到样品表面相位差分图,经过积分,重建样品表面形貌的定量分布.当相邻两点相位差的绝对值小于,不产生相位包裹,避免了目前的干涉法相位解包裹存在的问题,将干涉法相邻两点相位差绝对值的限制条件由目前的扩大到2,提高了干涉法表面形貌成像的适用范围.参考面和样品置于同一平台之上,消除环境干扰及系统振动的影响,噪声幅度小于0.3 nm.通过对光学分辨率片及表面粗糙度标准样板的表面形貌成像,对本方法进行了验证,系统的轴向分辨率优于1 nm.
    Microscopic surface topography plays an important role in studying the functions and properties of materials. Microscopic surface topography measurement has been widely used in many areas, such as machine manufacturing, electronic industry and biotechnology. Optical interferometry is a popular technique for surface topography measurement with an axial resolution up to nanoscale. However, the application of this technique is hampered by phase wrapping, which results in a limited measurement range for this technique. Various digital algorithms for phase unwrapping have been proposed based on the phase continuity between two adjacent points. However, several significant challenges still exist in recovering correct phase with this technique. Optical coherence tomography (OCT) is a non-contact three-dimensional imaging modality with high spatial resolution, and it has been widely used for imaging the biological tissues. In this paper, we demonstrate a method for nanoscale imaging of surface topography by using common-path phase-resolved spectral domain OCT to reduce the influence of phase wrapping. The system includes a superluminescent diode with a central wavelength of 1310 nm and a spectral bandwidth of 62 nm, an optical fiber circulator, a home-made spectrometer, and a reference arm and a sample arm in common-path arrangement. The reference mirror and the sample under investigation are positioned on a same stage in order to further reduce the influence of ambient vibration. The phase difference between two adjacent points is calculated by performing Fourier transform on the measured interferometric spectrum. The phase difference distribution of the surface is obtained first. And then, the surface topography of the sample is constructed by integrating the phase difference distribution. In the traditional methods, phase wrapping occurs if the absolute value of the measured phase is greater than . However, in the present method, phase wrapping occurs if the absolute value of the phase difference between two adjacent points is greater than . The maximal detectable absolute value of the phase difference between two adjacent points increases from for the traditional methods to 2 for the present method. The experimental results indicate that the present system has a high stability and the maximum fluctuation is less than 0.3 nm without averaging. The accuracy of the system is tested with a piezo stage, and the mean absolute deviation of the measured results is 0.62 nm. The performance of the present system is also demonstrated by the surface topography imaging of an optical resolution test target and a roughness comparison specimen. The experimental result shows that the present system is a potential powerful tool for surface topography imaging with an axial resolution better than 1 nm.
      通信作者: 王毅, wangyi@neuq.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61275214,31170956)和河北省自然科学基金(批准号:A2015501065,H2015501133)资助的课题.
      Corresponding author: Wang Yi, wangyi@neuq.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.61275214,31170956) and the Hebei Provincial Natural Science Foundation of China (Grant Nos.A2015501065,H2015501133).
    [1]

    Thomas T R 2013 Sur. Topogr. Metrol. Prop. 2 014001

    [2]

    Heintze S D, Forjanic M, Rousson V 2006 Dent. Mater. 22 146

    [3]

    Song R L, Liu P, Zhang K, Liu X K, Chen X H 2016 Chin. J. Mater. Res. 30 255 (in Chinese) [宋瑞利, 刘平, 张柯, 刘新宽, 陈小红 2016 材料研究学报 30 255]

    [4]

    Leyva-Mendivil M F, Lengiewicz J, Page A, Bressloff N W, Limbert G 2017 Tribol. Lett. 65 12

    [5]

    Wang J D, Chen D R, Kong X M 2003 Tribology 23 52 (in Chinese) [汪家道, 陈大融, 孔宪梅 2003 摩擦学学报 23 52]

    [6]

    Groot P D 2015 Adv. Opt. Photon. 7 1

    [7]

    Bruzzone A A G, Costa H L, Lonardo P M, Lucca D A 2008 CIRP Annals-Manufact. Technol. 57 750

    [8]

    Leach R K, Giusca C L, Naoi K 2009 Measur. Sci. Technol. 20 125102

    [9]

    Wang D, He C, Stoykovich M P, Schwartz D K 2015 ACS Nano 9 1656

    [10]

    Guenther K H, Wierer P G, Bennett J M 1984 Appl. Opt. 23 3820

    [11]

    Labella V P, Ding Z, Bullock D W, Emery C, Thibado P M 2000 J. Vacuum Sci. Technol. A 18 1492

    [12]

    Schouteden K, Lauwaet K, Janssens E, Barcaro G, Fortunelli A, van Haesendonck C 2014 Nanoscale 6 2170

    [13]

    Ando T, Uchihashi T, Scheuring S 2014 Chem. Rev. 114 3120

    [14]

    Butt H J, Cappella B, Kappl M 2005 Surf. Sci. Rep. 59 1

    [15]

    Duque D, Garzn J 2013 Opt. Laser Technol. 50 182

    [16]

    Shi K, Li P, Yin S, Liu Z 2004 Opt. Express 12 2096

    [17]

    Cai H, Guangyao L I, Huang Z 2016 Laser Technol. 40 20 (in Chinese) [蔡怀宇, 李光耀, 黄战华 2016 激光技术 40 20]

    [18]

    Lehmann P, Khnhold P, Xie W 2014 Measur. Sci. Technol. 25 065203

    [19]

    Liu C, Chen L, Wang J, Han Z G, Shi L L 2011 Opto-electronic Eng. 38 71

    [20]

    Lin H, Li Y, Wang D, Tong X, Liu M 2009 Appl. Opt. 48 1502

    [21]

    Zhou Z F, Zhang T, Zhou W D, Li W J 2001 Opto-electronic Eng. 28 7 (in Chinese) [周肇飞, 张涛, 周卫东, 李文杰 2001 光电工程 28 7]

    [22]

    Liu S, Yang L X 2007 Opt. Eng. 46 051012

    [23]

    Goldstein G, Creath K 2015 Appl. Opt. 54 5175

    [24]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W 1991 Science 254 1178

    [25]

    Wang R K, An L 2009 Opt. Express 17 8926

    [26]

    Ortiz S, Siedlecki D, Remon L, Marcos S 2009 Appl. Opt. 48 6708

    [27]

    Ortiz S, Siedlecki D, Prezmerino P, Chia N, Castro A D, Szkulmowski M 2011 Biomed. Opt. Express 2 3232

    [28]

    Sun M, Birkenfeld J, Castro A D, Ortiz S, Marcos S 2014 Biomed. Opt. Express 5 3547

    [29]

    Xue P, Fujimoto J G 2008 Sci. Bull. 53 1963

    [30]

    Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher A F, Drexler W, Apolonski A, Wadsworth W J, Knight J C, Russell P S, Vetterlein M, Scherzer E 2002 Opt. Lett. 27 1800

    [31]

    Tang T, Zhao C, Chen Z Y, Li P, Ding Z H 2015 Acta Phys. Sin. 64 174201 (in Chinese) [唐弢, 赵晨, 陈志彦, 李鹏, 丁志华 2015 物理学报 64 174201]

    [32]

    Ma Z, He Z, Wang S, Wang Y, Li M, Wang Q, Wang F 2012 Opt. Eng. 51 063203

    [33]

    Tomlins P H, Wang R K 2005 J. Phys. D: Appl. Phys. 38 2519

  • [1]

    Thomas T R 2013 Sur. Topogr. Metrol. Prop. 2 014001

    [2]

    Heintze S D, Forjanic M, Rousson V 2006 Dent. Mater. 22 146

    [3]

    Song R L, Liu P, Zhang K, Liu X K, Chen X H 2016 Chin. J. Mater. Res. 30 255 (in Chinese) [宋瑞利, 刘平, 张柯, 刘新宽, 陈小红 2016 材料研究学报 30 255]

    [4]

    Leyva-Mendivil M F, Lengiewicz J, Page A, Bressloff N W, Limbert G 2017 Tribol. Lett. 65 12

    [5]

    Wang J D, Chen D R, Kong X M 2003 Tribology 23 52 (in Chinese) [汪家道, 陈大融, 孔宪梅 2003 摩擦学学报 23 52]

    [6]

    Groot P D 2015 Adv. Opt. Photon. 7 1

    [7]

    Bruzzone A A G, Costa H L, Lonardo P M, Lucca D A 2008 CIRP Annals-Manufact. Technol. 57 750

    [8]

    Leach R K, Giusca C L, Naoi K 2009 Measur. Sci. Technol. 20 125102

    [9]

    Wang D, He C, Stoykovich M P, Schwartz D K 2015 ACS Nano 9 1656

    [10]

    Guenther K H, Wierer P G, Bennett J M 1984 Appl. Opt. 23 3820

    [11]

    Labella V P, Ding Z, Bullock D W, Emery C, Thibado P M 2000 J. Vacuum Sci. Technol. A 18 1492

    [12]

    Schouteden K, Lauwaet K, Janssens E, Barcaro G, Fortunelli A, van Haesendonck C 2014 Nanoscale 6 2170

    [13]

    Ando T, Uchihashi T, Scheuring S 2014 Chem. Rev. 114 3120

    [14]

    Butt H J, Cappella B, Kappl M 2005 Surf. Sci. Rep. 59 1

    [15]

    Duque D, Garzn J 2013 Opt. Laser Technol. 50 182

    [16]

    Shi K, Li P, Yin S, Liu Z 2004 Opt. Express 12 2096

    [17]

    Cai H, Guangyao L I, Huang Z 2016 Laser Technol. 40 20 (in Chinese) [蔡怀宇, 李光耀, 黄战华 2016 激光技术 40 20]

    [18]

    Lehmann P, Khnhold P, Xie W 2014 Measur. Sci. Technol. 25 065203

    [19]

    Liu C, Chen L, Wang J, Han Z G, Shi L L 2011 Opto-electronic Eng. 38 71

    [20]

    Lin H, Li Y, Wang D, Tong X, Liu M 2009 Appl. Opt. 48 1502

    [21]

    Zhou Z F, Zhang T, Zhou W D, Li W J 2001 Opto-electronic Eng. 28 7 (in Chinese) [周肇飞, 张涛, 周卫东, 李文杰 2001 光电工程 28 7]

    [22]

    Liu S, Yang L X 2007 Opt. Eng. 46 051012

    [23]

    Goldstein G, Creath K 2015 Appl. Opt. 54 5175

    [24]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W 1991 Science 254 1178

    [25]

    Wang R K, An L 2009 Opt. Express 17 8926

    [26]

    Ortiz S, Siedlecki D, Remon L, Marcos S 2009 Appl. Opt. 48 6708

    [27]

    Ortiz S, Siedlecki D, Prezmerino P, Chia N, Castro A D, Szkulmowski M 2011 Biomed. Opt. Express 2 3232

    [28]

    Sun M, Birkenfeld J, Castro A D, Ortiz S, Marcos S 2014 Biomed. Opt. Express 5 3547

    [29]

    Xue P, Fujimoto J G 2008 Sci. Bull. 53 1963

    [30]

    Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher A F, Drexler W, Apolonski A, Wadsworth W J, Knight J C, Russell P S, Vetterlein M, Scherzer E 2002 Opt. Lett. 27 1800

    [31]

    Tang T, Zhao C, Chen Z Y, Li P, Ding Z H 2015 Acta Phys. Sin. 64 174201 (in Chinese) [唐弢, 赵晨, 陈志彦, 李鹏, 丁志华 2015 物理学报 64 174201]

    [32]

    Ma Z, He Z, Wang S, Wang Y, Li M, Wang Q, Wang F 2012 Opt. Eng. 51 063203

    [33]

    Tomlins P H, Wang R K 2005 J. Phys. D: Appl. Phys. 38 2519

计量
  • 文章访问数:  4850
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-22
  • 修回日期:  2017-04-23
  • 刊出日期:  2017-08-05

/

返回文章
返回