搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微尺度空泡溃灭驱使微球运动的机理研究

魏梦举 陈力 伍涛 张鸿雁 崔海航

引用本文:
Citation:

微尺度空泡溃灭驱使微球运动的机理研究

魏梦举, 陈力, 伍涛, 张鸿雁, 崔海航

Mechanism of the motion of spherical microparticle induced by a collapsed microbubble

Wei Meng-Ju, Chen Li, Wu Tao, Zhang Hong-Yan, Cui Hai-Hang
PDF
导出引用
  • 受限空泡的溃灭是气泡动力学的核心问题,研究表明毫米尺度的空泡溃灭可以拉动附近同尺度的悬浮颗粒运动.本文针对受限空泡溃灭在微尺度下的行为开展研究,通过气泡驱动的球形微马达实验,给出了微气泡溃灭形成射流从而显著推动马达前进的现象,但由于溃灭时间很短,MicroPIV系统不能给出足够的流动细节.进而采用基于流体体积的数值手段模拟了这一过程,获得了流场的时空分布,并通过积分估算了微球获得的冲量,给出了微球所能达到的速度.结果表明这一问题与尺度密切相关,微尺度下空泡溃灭足以推动微球显著运动,在气泡尺寸固定的情况下,微球半径越小,微球与气泡间距离越近,推动的效果越明显.冲量定理则定性地解释了宏观尺度与微尺度下存在差异的原因.这一特殊的微流动问题不但扩展了空化研究的尺度范围,揭示了微尺度下空泡与颗粒作用的特性,而且对提高微马达的驱动效率也具有重要意义.
    Collapse of a confined bubble is the core problem of bubble dynamics. The recent study has shown that the collapse of macroscopic bubble may drive the motion of suspended particle with the similar size, but, there has still been a lack of the relevant study on a microscale. In the experiment about the bubble driven micro-motor, the locomotion of motor pushed by microjetting has been noticed. However, due to the limitation of experimental conditions, it is difficult to reveal the details of propulsion mechanism. In this paper, the volume of fluid based numerical method is adopted to simulate the interaction process between a collapsing microbubble and the suspended particle nearby. The spatial distribution and the time evolution of flow field are obtained, and the velocity that the micromotor could be achieved is deduced by integrating the impulsive force. The results show that when the bubble size is fixed, the interaction force is inversely proportional to the size of microparticle and the gap between microparticle and bubble. The Kelvin impulse theorem is used to clarify the difference between the interaction on a macroscopic scale and that on a microscopic scale. This study not only extends the scope of cavitation dynamics, which reveals the characteristics of interaction between bubble and particle on a microscale, but also is significant for improving the efficiency of self-propelled micro-motor.
      通信作者: 崔海航, cuihaihang@xauat.edu.cn
    • 基金项目: 国家自然科学基金应急管理项目(批准号:11447133)、国家自然科学基金青年基金(批准号:11602187)、陕西省自然科学基础研究计划青年人才项目(批准号:2016JQ1008)、陕西省教育厅专项科研计划(批准号:15JK1385)和西部绿色建筑国家重点实验室培育基地自主科研项目资助的课题.
      Corresponding author: Cui Hai-Hang, cuihaihang@xauat.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China for Emergency Management Projects (Grant No. 11447133), the National Natural Science Foundation of China for Young (Grant No. 11602187), the Natural Science Foundation of Shaanxi Province for Youth Talent Project, China (Grant No. 2016JQ1008), Special Research Project of Shanxi Educational Committee, China (Grant No. 15JK1385), and the Project from State Key Laboratory of Building Science and Technology in Western China.
    [1]

    Yang F, Chen W Z, Tang X L 2009 Fluid Mach. 37 36(in Chinese)[杨帆, 陈伟政, 唐学林2009流体机械37 36]

    [2]

    Huang J T 1991 Principle and Application of Cavitation (Beijing:Tsinghua University Press) p2(in Chinese)[黄继汤1991空化与空蚀的原理及应用(北京:清华大学出版社)第2页]

    [3]

    Blake J R, Taib B B, Doherty G 1987 J. Fluid Mech. 181 197

    [4]

    Blake J R, Taib B B, Doherty G 1986 J. Fluid Mech. 170 479

    [5]

    Gregorčič P, Petkovšek R, Možina J 2007 J. Appl. Phys. 102 094904

    [6]

    G K Batchelor (translated by Shen Q, Jia F) 1997 Introduction to the Fluid Dynamics (Beijing:Science Press) p69(in Chinese)[巴切勒G K著, (沈青, 贾复译)1997流体动力学引论(北京:科学出版社)第69页]

    [7]

    Gao X X, Chen W Z, Huang W, Xu J F, Xu X H, Liu Y N, Liang Y 2009 Chin. Sci. Bull. 4 408(in Chinese)[高贤娴, 陈伟中, 黄威, 徐俊峰, 徐兴华, 刘亚楠, 梁越2009科学通报4 408]

    [8]

    Kröninger D, Köhler K, Kurz T, W Lauterborn 2010 Exp. Fluids 48 395

    [9]

    Didenko Y T, Suslick K S 2002 Nature 418 394

    [10]

    Zwaan E, Le Gac S, Tsuji K, Ohl C D 2007 Phys. Rev. Lett. 98 254501

    [11]

    Li S, Han R, Zhang A M 2016 J. Fluid. Struct. 65 333

    [12]

    Poulain S, Guenoun G, Gart S, Crowe W, Jung S 2015 Phys. Rev. Lett. 114 214501

    [13]

    Borkent B M, Arora M, Ohl C D, de Jong N, Versluis M, Lohse D, Khoo B C 2008 J. Fluid Mech. 610 157

    [14]

    Manjare M, Yang B, Zhao Y P 2012 Phys. Rev. Lett. 109 128305

    [15]

    Wang L L, Cui H H, Zhang J, Zheng X, Wang L, Chen L 2016 Acta Phys. Sin. 65 220201 (in Chinese)[王雷磊, 崔海航, 张静, 郑旭, 王磊, 陈力2016物理学报65 220201]

    [16]

    Zhang J, Zheng X, Wang L L, Cui H H, Li Z H 2017 J. Exp. Fluid Mech. 31 61(in Chinese)[张静, 郑旭, 王雷磊, 崔海航, 李战华2017实验流体力学31 61]

    [17]

    Zhou G J, Yan Z J, Xu S X 2000 Fluid Dynamics (Beijing:Higher Education Press) p132(in Chinese)[周光炯, 严宗教, 许世雄2000流体力学(北京:高等教育出版社)第132页]

    [18]

    Wang F J 2004 Computational Fluid Dynamics (Beijing:Tsinghua University Press) p7(in Chinese)[王福军2004计算流体动力学分析:CFD软件原理与应用(北京:清华大学出版社)第7页]

    [19]

    Zhang L X, Yin Q, Shao X M 2012 Chin. J. Hydrodyn. 27 127(in Chinese)[张凌新, 尹琴, 邵雪明2012水动力学研究与进展A辑27 127]

    [20]

    Christopher E B 1995 Cavitation and Bubble Dynamics (New York:Oxford University Press) p34

    [21]

    Petkovsek R, Gregorcic P 2007 J. Appl. Phys. 102 044909

    [22]

    Plesset M S, Chapman R B 1971 J. Fluid Mech. 47 283

    [23]

    Yeh H C, Yang W J 1968 J. Appl. Phys. 39 3156

  • [1]

    Yang F, Chen W Z, Tang X L 2009 Fluid Mach. 37 36(in Chinese)[杨帆, 陈伟政, 唐学林2009流体机械37 36]

    [2]

    Huang J T 1991 Principle and Application of Cavitation (Beijing:Tsinghua University Press) p2(in Chinese)[黄继汤1991空化与空蚀的原理及应用(北京:清华大学出版社)第2页]

    [3]

    Blake J R, Taib B B, Doherty G 1987 J. Fluid Mech. 181 197

    [4]

    Blake J R, Taib B B, Doherty G 1986 J. Fluid Mech. 170 479

    [5]

    Gregorčič P, Petkovšek R, Možina J 2007 J. Appl. Phys. 102 094904

    [6]

    G K Batchelor (translated by Shen Q, Jia F) 1997 Introduction to the Fluid Dynamics (Beijing:Science Press) p69(in Chinese)[巴切勒G K著, (沈青, 贾复译)1997流体动力学引论(北京:科学出版社)第69页]

    [7]

    Gao X X, Chen W Z, Huang W, Xu J F, Xu X H, Liu Y N, Liang Y 2009 Chin. Sci. Bull. 4 408(in Chinese)[高贤娴, 陈伟中, 黄威, 徐俊峰, 徐兴华, 刘亚楠, 梁越2009科学通报4 408]

    [8]

    Kröninger D, Köhler K, Kurz T, W Lauterborn 2010 Exp. Fluids 48 395

    [9]

    Didenko Y T, Suslick K S 2002 Nature 418 394

    [10]

    Zwaan E, Le Gac S, Tsuji K, Ohl C D 2007 Phys. Rev. Lett. 98 254501

    [11]

    Li S, Han R, Zhang A M 2016 J. Fluid. Struct. 65 333

    [12]

    Poulain S, Guenoun G, Gart S, Crowe W, Jung S 2015 Phys. Rev. Lett. 114 214501

    [13]

    Borkent B M, Arora M, Ohl C D, de Jong N, Versluis M, Lohse D, Khoo B C 2008 J. Fluid Mech. 610 157

    [14]

    Manjare M, Yang B, Zhao Y P 2012 Phys. Rev. Lett. 109 128305

    [15]

    Wang L L, Cui H H, Zhang J, Zheng X, Wang L, Chen L 2016 Acta Phys. Sin. 65 220201 (in Chinese)[王雷磊, 崔海航, 张静, 郑旭, 王磊, 陈力2016物理学报65 220201]

    [16]

    Zhang J, Zheng X, Wang L L, Cui H H, Li Z H 2017 J. Exp. Fluid Mech. 31 61(in Chinese)[张静, 郑旭, 王雷磊, 崔海航, 李战华2017实验流体力学31 61]

    [17]

    Zhou G J, Yan Z J, Xu S X 2000 Fluid Dynamics (Beijing:Higher Education Press) p132(in Chinese)[周光炯, 严宗教, 许世雄2000流体力学(北京:高等教育出版社)第132页]

    [18]

    Wang F J 2004 Computational Fluid Dynamics (Beijing:Tsinghua University Press) p7(in Chinese)[王福军2004计算流体动力学分析:CFD软件原理与应用(北京:清华大学出版社)第7页]

    [19]

    Zhang L X, Yin Q, Shao X M 2012 Chin. J. Hydrodyn. 27 127(in Chinese)[张凌新, 尹琴, 邵雪明2012水动力学研究与进展A辑27 127]

    [20]

    Christopher E B 1995 Cavitation and Bubble Dynamics (New York:Oxford University Press) p34

    [21]

    Petkovsek R, Gregorcic P 2007 J. Appl. Phys. 102 044909

    [22]

    Plesset M S, Chapman R B 1971 J. Fluid Mech. 47 283

    [23]

    Yeh H C, Yang W J 1968 J. Appl. Phys. 39 3156

  • [1] 解奕晨, 庄晓如, 岳思君, 李翔, 余鹏, 鲁春. HFE-7100平行微通道流动沸腾实验. 物理学报, 2024, 73(5): 054401. doi: 10.7498/aps.73.20231415
    [2] 王丽娜, 陈力, 盛敏佳, 王雷磊, 崔海航, 郑旭, 黄明华. 体相微马达双气泡聚并驱动的界面演化机制. 物理学报, 2023, 72(16): 164703. doi: 10.7498/aps.72.20230608
    [3] 李长亮, 陈智辉, 冯光, 王晓伟, 杨毅彪, 费宏明, 孙非, 刘一超. 基于波导-同心环形谐振腔模型的纳米流体荧光颗粒微位移检测. 物理学报, 2022, 71(20): 204702. doi: 10.7498/aps.71.20220771
    [4] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [5] 俞炜, 邓梓龙, 吴苏晨, 于程, 王超. Y型微通道内双重乳液流动破裂机理. 物理学报, 2019, 68(5): 054701. doi: 10.7498/aps.68.20181877
    [6] 赵章风, 张文俊, 牛丽丽, 孟龙, 郑海荣. 基于微泡共振的快速微流体声学混合方法研究. 物理学报, 2018, 67(19): 194302. doi: 10.7498/aps.67.20180705
    [7] 王佐, 刘雁, 张家忠. 过渡区微尺度流动的有效黏性多松弛系数格子Boltzmann模拟. 物理学报, 2016, 65(1): 014703. doi: 10.7498/aps.65.014703
    [8] 唐琬婷, 肖时芳, 孙学贵, 胡望宇, 邓辉球. 液态锂在铜的微通道中的流动行为. 物理学报, 2016, 65(10): 104705. doi: 10.7498/aps.65.104705
    [9] 段娟, 陈耀钦, 朱庆勇. 微扩张管道内幂律流体非定常电渗流动. 物理学报, 2016, 65(3): 034702. doi: 10.7498/aps.65.034702
    [10] 姜玉婷, 齐海涛. 微平行管道内Eyring流体的电渗滑移流动. 物理学报, 2015, 64(17): 174702. doi: 10.7498/aps.64.174702
    [11] 王宝, 汪家道, 陈大融. 基于微空泡效应的疏水性展向微沟槽表面水下减阻研究. 物理学报, 2014, 63(7): 074702. doi: 10.7498/aps.63.074702
    [12] 闫寒, 张文明, 胡开明, 刘岩, 孟光. 随机粗糙微通道内流动特性研究. 物理学报, 2013, 62(17): 174701. doi: 10.7498/aps.62.174701
    [13] 刘全生, 杨联贵, 苏洁. 微平行管道内Jeffrey流体的非定常电渗流动. 物理学报, 2013, 62(14): 144702. doi: 10.7498/aps.62.144702
    [14] 胡海豹, 鲍路瑶, 黄苏和. 纳米通道内液态微流动密度分布特性数值模拟研究. 物理学报, 2013, 62(12): 124705. doi: 10.7498/aps.62.124705
    [15] 李贝贝, 张宏超, 韩冰, 陈军, 倪晓武, 陆建. 圆锥边界附近激光空泡溃灭行为的研究. 物理学报, 2012, 61(17): 174210. doi: 10.7498/aps.61.174210
    [16] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响. 物理学报, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [17] 任明星, 李邦盛, 杨 闯, 傅恒志. 微尺度型腔内液态金属流动规律模拟研究. 物理学报, 2008, 57(8): 5063-5071. doi: 10.7498/aps.57.5063
    [18] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟. 物理学报, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [19] 丁英涛, 何 枫, 姚朝晖, 沈孟育, 王学芳. 长微直管内气体低速流动的亚堵塞现象. 物理学报, 2004, 53(8): 2429-2433. doi: 10.7498/aps.53.2429
    [20] 尹传元, 蒋澄华, 王化勤. 聚氨酯离聚体微畴体积的研究. 物理学报, 1988, 37(9): 1522-1526. doi: 10.7498/aps.37.1522
计量
  • 文章访问数:  4570
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-23
  • 修回日期:  2017-06-02
  • 刊出日期:  2017-08-05

/

返回文章
返回