搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁电材料光催化活性的研究进展

吴化平 令欢 张征 李研彪 梁利华 柴国钟

引用本文:
Citation:

铁电材料光催化活性的研究进展

吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟

Research progress on photocatalytic activity of ferroelectric materials

Wu Hua-Ping, Ling Huan, Zhang Zheng, Li Yan-Biao, Liang Li-Hua, Chai Guo-Zhong
PDF
导出引用
  • 光催化技术被认为是最有前景的环境污染处理技术,这就使得光催化剂材料备受瞩目.近年来,铁电材料作为新型光催化剂材料受到人们越来越多的关注,其原因在于铁电材料特有的自发极化有望解决催化反应过程中的电子-空穴对复合问题,进而提高光催化活性.本文从两个方面对铁电极化如何影响光催化进行综述:一方面,从铁电极化入手归纳总结其对电子-空穴对分离的影响,进而更深入地从极化引发的退极化场和能带弯曲两个部分来阐述具体的影响机理;另一方面,为了消除静电屏蔽,分别从温度、应力(应变)、电场三个外场因素调控极化入手,归纳总结外场调控极化对电子-空穴对分离的影响,进而影响光催化活性.最后对该领域今后的发展前景进行了展望.
    Photocatalytic technology is considered to be the most promising treatment technology of environmental pollution. In this technology, the electronhole pairs generated by the light-responsive materials under sunlight irradiation will produce the oxidation-reduction reactions with the outside world. At present, there are still a series of problems needed to be solved in the photocatalytic technology, among which the recombination of photogenerated electron-hole pairs is a very important limitation. In recent years, the ferroelectric materials have attracted much attention as a new type of photocatalyst because the spontaneous polarizations of ferroelectric materials are expected to solve the recombination problem of electronhole pairs in the catalytic reaction process. However, there are no systematic analyses of the specific mechanisms for ferroelectric materials. In this paper, we review the effects of ferroelectric polarization of ferroelectric materials on photocatalytic activity from three aspects. Firstly, the polarization can give rise to depolarization field and band bending, thereby affecting the separation rate of electron-hole pairs, and speeding up the transmission rate. Therefore, in the first part, the effects of depolarization field and energy band bending on catalytic activity are summarized. This can conduce to understanding the influence of polarization on catalytic activity more clearly from the intrinsic mechanism. Next, the built-in electric field induced by the polarization of ferroelectric material can increase the separation rate of photogenerated carriers and improve the catalytic activity. However, the static built-in electric field easily leads to free carrier saturation due to the electrostatic shielding, which reduces the carrier separation rate. Thus, in order to eliminate the electrostatic shielding, the effects of three external field including temperature, stress (strain) and electric field, which can regulate polarization, on the separation of electronhole pairs and photocatalytic activity are summarized in the second part. Finally, detailed discussion is presented on how to exert effective external fields, such as strain, temperature, and applied electric field, and how to study the force catalysis or temperature catalysis under the no-light condition according to the piezoelectricity effect and pyroelectric effect of ferroelectric material in the last part.
      通信作者: 吴化平, wuhuaping@gmail.com
    • 基金项目: 国家自然科学基金(批准号:11372280,11672269,51475424,51675485)、浙江省科技厅公益工业项目(批准号:2016C31041)和国家重点实验室开放基金(批准号:GZ15205)资助的课题.
      Corresponding author: Wu Hua-Ping, wuhuaping@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11372280, 11672269, 51475424, 51675485), the Project of Public Welfare of Zhejiang Province Technology Department, China (Grant No. 2016C31041), and the National Key Laboratory Open Foundation of China (Grant No. GZ15205).
    [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Wang Y Z, Hu C 1998 Chin. J. Environ. (in Chinese)[王怡中, 胡春1998环境科学]

    [3]

    Legrini O, Oliveros E, Braun A M 1993 Chem. Rev. 93 671

    [4]

    Cui Y M, Dan D J, Zhu Y R 2001 Chin. J. Inorg. Chem. 17 401 (in Chinese)[崔玉民, 单德杰, 朱亦仁2001无机化学学报17 401]

    [5]

    Hadjiivanov K, Vasileva E, Kantcheva M, Klissursri D 1991 Mater. Chem. Phys. 28 367

    [6]

    Gao Y M, Lee W, Trehan R, Kershaw R, Dwight K, Wold A 1991 Mater. Res. Bull. 26 1247

    [7]

    Grosso D, Boissiere C, Smarsly B, Brezesinski T, Pinna N, Albouy P A, Amenitsch H, Antonietti M, Sanchez C 2004 Nature Mater. 3 787

    [8]

    Mohan S, Subramanian B 2013 RSC Adv. 3 23737

    [9]

    Wang H C, Lin Y H, Feng Y N, Shen Y 2013 J. Electroceram. 31 271

    [10]

    Humayun M, Zada A, Li Z J, Xie M Z, Zhang X L, Yang Q, Raziq F, Jing L Q 2016 Appl. Catal. B:Environ. 180 219

    [11]

    Giocondi J L, Rohrer G S 2001 Chem. Mater. 13 241

    [12]

    Saito K, Koga K, Kudo A 2011 Dalton T. 40 3909

    [13]

    Shi J, Zhao P, Wang X D 2013 Adv. Mater. 25 916

    [14]

    Zheng Y, Wang B, Woo C H 2009 Acta Mech. Solida Sin. 22 524

    [15]

    Dong H F, Wu Z G, Wang S Y, Duan W H, Li J B 2013 Appl. Phys. Lett. 102 072905

    [16]

    Shuai J L, Liu X X, Yang B 2016 Acta Phys. Sin. 65 118101 (in Chinese)[帅佳丽, 刘向鑫, 杨彪2016物理学报65 118101]

    [17]

    Sakar M, Balakumar S, Saravanan P, Bharathkumar S 2016 Nanoscale 8 1147

    [18]

    Dunn S, Stock M 2012 Mrs Online Proceeding Library 1446

    [19]

    Park S, Lee C W, Kang M G, Kim S, Kim H J, Kwon J E, Park S Y, Kang C Y, Hong K S, Nam K T 2014 Phys. Chem. Chem. Phys. 16 10408

    [20]

    Cui Y F, Briscoe J, Dunn S 2013 Chem. Mater. 25 4215

    [21]

    Li L, Salvador P A, Rohrer G S 2013 Nanoscale 6 24

    [22]

    Dunn S, Shaw C P, Huang Z, Whatmore R W 2002 Nanotechnology 13 456

    [23]

    He H Q, Yin J, Li Y X, Zhang Y, Qiu H S, Xu J B, Xu T, Wang C Y 2014 Appl. Catal. B-Environ. 156 35

    [24]

    Stock M, Dunn S 2012 J. Phys. Chem. C 116 20854

    [25]

    Yang X L, Su X D, Shen M R, Zheng F G, Xin Y, Zhang L, Hua M C, Chen Y J, Harris V G 2012 Adv. Mater. 24 1202

    [26]

    Popescu D G, Husanu M A, Trupina L, Hrib L, Pintilie L, Barinov A, Lizzit S, Lacovig P, Teodorescu C M 2015 Phys. Chem. Chem. Phys. 17 509

    [27]

    Yu H, Wang X H, Hao W C, Li L T 2015 RSC Adv. 5 72410

    [28]

    Yang W, Rodriguez B J, Gruverman A, Nemanich R J 2005 J. Phys. Condens. Mater. 17 1415

    [29]

    Kalinin S V, Bonnell D A, Alvarez T, Lei X, Hu Z, Ferris J H, Zhang Q, Dunn S 2002 Nano Lett. 2 589

    [30]

    Dunn S, Jones P M, Gallardo D E 2007 J. Am. Chem. Soc. 129 8724

    [31]

    Kalinin S V, Bonnell D A, Alvarez T, Lei X, Hu Z, Ferris J H, Zhang Q, Dunn S 2002 Nano Lett. 2 589

    [32]

    Yan F, Chen G N, Lu L, Spanier J E 2012 ACS Nano 6 2353

    [33]

    Yang W, Yu Y, Starr M B, Yin X, Li Z, Kvit A, Wang S, Zhao P, Wang X 2015 Nano Lett. 15 7574

    [34]

    Giocondi J L, Rohrer G S 2001 J. Phys. Chem. B 105 8275

    [35]

    Benedek N A, Fennie C J 2013 J. Phys. Chem. C 117 13339

    [36]

    Bowen C R, Kim H A, Weaver P M, Dunn S 2014 Energy Environ. Sci. 7 25

    [37]

    Sakar M, Balakumar S, Saravanan P, Bharathkumar S 2015 Nanoscale 7 10667

    [38]

    Bowen C R, Kim H A, Weaver P M, Dunn S 2013 Energy Environ. Sci. 7 25

    [39]

    Schultz A M, Zhang Y L, Salvador P A, Rohrer G S 2011 ACS Appl. Mater. Inter. 3 1562

    [40]

    Ji W, Yao K, Lim Y F, Liang Y C, Suwardi A 2013 Appl. Phys. Lett. 103 062901

    [41]

    Cui Y F, Goldup S M, Dunn S 2015 RSC Adv. 5 30372

    [42]

    Li L, Rohrer G S, Salvador P A 2012 J. Am. Ceram. Soc. 95 1414

    [43]

    Li L, Zhang Y L, Schultz A M, Liu X, Salvador P A, Rohrer G S 2012 Cat. Sci. Tec. 2 1945

    [44]

    Zhang Y L, Schultz A M, Salvador P A, Rohrer G S 2011 J. Mater. Chem. 21 4168

    [45]

    Li H D, Sang Y H, Chang S J, Huang X, Zhang Y, Yang R S, Jiang H D, Liu H, Wang Z L 2015 Nano Lett. 15 2372

    [46]

    Gutmann E, Benke A, Gerth K, Bottcher H, Mehner E, Klein C, Krause-Buchholz U, Bergmann U, Pompe W, Meyer D C 2012 J. Phys. Chem. C 116 5383

    [47]

    Su R, Shen Y J, Li L L, Zhang D W, Yang G, Gao C B, Yang Y D 2015 Small 11 202

    [48]

    Zhang G H, Zhu J, Jiang G L, Wang B, Zheng Y 2016 Acta Phys. Sin. 65 107701 (in Chinese)[张耿鸿, 朱佳, 姜格蕾, 王彪, 郑跃2016物理学报65 107701]

    [49]

    Wu H P, Ma X F, Zhang Z, Zeng J, Wang J, Chai G Z 2016 AIP Adv. 6 015309

    [50]

    Wu H P, Ma X F, Zhang Z, Zhu J, Wang J, Chai G Z 2016 J. Appl. Phys. 119 104421

    [51]

    Wu H P, Chai G Z, Xu B, Li J Q, Zhang Z 2013 Appl. Phys. A 113 155

    [52]

    Lin H, Wu Z, Jia Y M, Li W J, Zheng R K, Luo H S 2014 Appl. Phys. Lett. 104 162907

  • [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Wang Y Z, Hu C 1998 Chin. J. Environ. (in Chinese)[王怡中, 胡春1998环境科学]

    [3]

    Legrini O, Oliveros E, Braun A M 1993 Chem. Rev. 93 671

    [4]

    Cui Y M, Dan D J, Zhu Y R 2001 Chin. J. Inorg. Chem. 17 401 (in Chinese)[崔玉民, 单德杰, 朱亦仁2001无机化学学报17 401]

    [5]

    Hadjiivanov K, Vasileva E, Kantcheva M, Klissursri D 1991 Mater. Chem. Phys. 28 367

    [6]

    Gao Y M, Lee W, Trehan R, Kershaw R, Dwight K, Wold A 1991 Mater. Res. Bull. 26 1247

    [7]

    Grosso D, Boissiere C, Smarsly B, Brezesinski T, Pinna N, Albouy P A, Amenitsch H, Antonietti M, Sanchez C 2004 Nature Mater. 3 787

    [8]

    Mohan S, Subramanian B 2013 RSC Adv. 3 23737

    [9]

    Wang H C, Lin Y H, Feng Y N, Shen Y 2013 J. Electroceram. 31 271

    [10]

    Humayun M, Zada A, Li Z J, Xie M Z, Zhang X L, Yang Q, Raziq F, Jing L Q 2016 Appl. Catal. B:Environ. 180 219

    [11]

    Giocondi J L, Rohrer G S 2001 Chem. Mater. 13 241

    [12]

    Saito K, Koga K, Kudo A 2011 Dalton T. 40 3909

    [13]

    Shi J, Zhao P, Wang X D 2013 Adv. Mater. 25 916

    [14]

    Zheng Y, Wang B, Woo C H 2009 Acta Mech. Solida Sin. 22 524

    [15]

    Dong H F, Wu Z G, Wang S Y, Duan W H, Li J B 2013 Appl. Phys. Lett. 102 072905

    [16]

    Shuai J L, Liu X X, Yang B 2016 Acta Phys. Sin. 65 118101 (in Chinese)[帅佳丽, 刘向鑫, 杨彪2016物理学报65 118101]

    [17]

    Sakar M, Balakumar S, Saravanan P, Bharathkumar S 2016 Nanoscale 8 1147

    [18]

    Dunn S, Stock M 2012 Mrs Online Proceeding Library 1446

    [19]

    Park S, Lee C W, Kang M G, Kim S, Kim H J, Kwon J E, Park S Y, Kang C Y, Hong K S, Nam K T 2014 Phys. Chem. Chem. Phys. 16 10408

    [20]

    Cui Y F, Briscoe J, Dunn S 2013 Chem. Mater. 25 4215

    [21]

    Li L, Salvador P A, Rohrer G S 2013 Nanoscale 6 24

    [22]

    Dunn S, Shaw C P, Huang Z, Whatmore R W 2002 Nanotechnology 13 456

    [23]

    He H Q, Yin J, Li Y X, Zhang Y, Qiu H S, Xu J B, Xu T, Wang C Y 2014 Appl. Catal. B-Environ. 156 35

    [24]

    Stock M, Dunn S 2012 J. Phys. Chem. C 116 20854

    [25]

    Yang X L, Su X D, Shen M R, Zheng F G, Xin Y, Zhang L, Hua M C, Chen Y J, Harris V G 2012 Adv. Mater. 24 1202

    [26]

    Popescu D G, Husanu M A, Trupina L, Hrib L, Pintilie L, Barinov A, Lizzit S, Lacovig P, Teodorescu C M 2015 Phys. Chem. Chem. Phys. 17 509

    [27]

    Yu H, Wang X H, Hao W C, Li L T 2015 RSC Adv. 5 72410

    [28]

    Yang W, Rodriguez B J, Gruverman A, Nemanich R J 2005 J. Phys. Condens. Mater. 17 1415

    [29]

    Kalinin S V, Bonnell D A, Alvarez T, Lei X, Hu Z, Ferris J H, Zhang Q, Dunn S 2002 Nano Lett. 2 589

    [30]

    Dunn S, Jones P M, Gallardo D E 2007 J. Am. Chem. Soc. 129 8724

    [31]

    Kalinin S V, Bonnell D A, Alvarez T, Lei X, Hu Z, Ferris J H, Zhang Q, Dunn S 2002 Nano Lett. 2 589

    [32]

    Yan F, Chen G N, Lu L, Spanier J E 2012 ACS Nano 6 2353

    [33]

    Yang W, Yu Y, Starr M B, Yin X, Li Z, Kvit A, Wang S, Zhao P, Wang X 2015 Nano Lett. 15 7574

    [34]

    Giocondi J L, Rohrer G S 2001 J. Phys. Chem. B 105 8275

    [35]

    Benedek N A, Fennie C J 2013 J. Phys. Chem. C 117 13339

    [36]

    Bowen C R, Kim H A, Weaver P M, Dunn S 2014 Energy Environ. Sci. 7 25

    [37]

    Sakar M, Balakumar S, Saravanan P, Bharathkumar S 2015 Nanoscale 7 10667

    [38]

    Bowen C R, Kim H A, Weaver P M, Dunn S 2013 Energy Environ. Sci. 7 25

    [39]

    Schultz A M, Zhang Y L, Salvador P A, Rohrer G S 2011 ACS Appl. Mater. Inter. 3 1562

    [40]

    Ji W, Yao K, Lim Y F, Liang Y C, Suwardi A 2013 Appl. Phys. Lett. 103 062901

    [41]

    Cui Y F, Goldup S M, Dunn S 2015 RSC Adv. 5 30372

    [42]

    Li L, Rohrer G S, Salvador P A 2012 J. Am. Ceram. Soc. 95 1414

    [43]

    Li L, Zhang Y L, Schultz A M, Liu X, Salvador P A, Rohrer G S 2012 Cat. Sci. Tec. 2 1945

    [44]

    Zhang Y L, Schultz A M, Salvador P A, Rohrer G S 2011 J. Mater. Chem. 21 4168

    [45]

    Li H D, Sang Y H, Chang S J, Huang X, Zhang Y, Yang R S, Jiang H D, Liu H, Wang Z L 2015 Nano Lett. 15 2372

    [46]

    Gutmann E, Benke A, Gerth K, Bottcher H, Mehner E, Klein C, Krause-Buchholz U, Bergmann U, Pompe W, Meyer D C 2012 J. Phys. Chem. C 116 5383

    [47]

    Su R, Shen Y J, Li L L, Zhang D W, Yang G, Gao C B, Yang Y D 2015 Small 11 202

    [48]

    Zhang G H, Zhu J, Jiang G L, Wang B, Zheng Y 2016 Acta Phys. Sin. 65 107701 (in Chinese)[张耿鸿, 朱佳, 姜格蕾, 王彪, 郑跃2016物理学报65 107701]

    [49]

    Wu H P, Ma X F, Zhang Z, Zeng J, Wang J, Chai G Z 2016 AIP Adv. 6 015309

    [50]

    Wu H P, Ma X F, Zhang Z, Zhu J, Wang J, Chai G Z 2016 J. Appl. Phys. 119 104421

    [51]

    Wu H P, Chai G Z, Xu B, Li J Q, Zhang Z 2013 Appl. Phys. A 113 155

    [52]

    Lin H, Wu Z, Jia Y M, Li W J, Zheng R K, Luo H S 2014 Appl. Phys. Lett. 104 162907

  • [1] 金程程, 丁玲玲, 宋子馨, 陶海军. BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能. 物理学报, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [2] 孙雨婷, 李明明, 王玲瑞, 樊贞, 郭尔佳, 郭海中. 外场对拓扑相变氧化物薄膜物性的调控研究进展. 物理学报, 2023, 72(9): 096801. doi: 10.7498/aps.72.20222266
    [3] 袁国亮, 王琛皓, 唐文彬, 张睿, 陆旭兵. HfO2基铁电薄膜的结构、性能调控及典型器件应用. 物理学报, 2023, 72(9): 097703. doi: 10.7498/aps.72.20222221
    [4] 刘南舒, 王聪, 季威. 磁性二维材料的近期研究进展. 物理学报, 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [5] 金鑫, 陶蕾, 张余洋, 潘金波, 杜世萱. 几种范德瓦耳斯铁电材料中新奇物性的研究进展. 物理学报, 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [6] 张利胜. 基于金纳米阵列表面等离子体驱动的光催化特性. 物理学报, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [7] 林翠, 白刚, 李卫, 高存法. 外延PbZr0.2Ti0.8O3薄膜负电容的应变调控. 物理学报, 2021, 70(18): 187701. doi: 10.7498/aps.70.20210810
    [8] 李飞, 张树君, 徐卓. 压电效应—百岁铁电的守护者. 物理学报, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [9] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [10] 吕笑梅, 黄凤珍, 朱劲松. 铁电材料中的电畴: 形成、结构、动性及相关性能. 物理学报, 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [11] 高荣贞, 王静, 王俊升, 黄厚兵. Landau-Devonshire理论探究不同类型铁电材料的电卡效应. 物理学报, 2020, 69(21): 217801. doi: 10.7498/aps.69.20201195
    [12] 裴明辉, 田瑜, 张金星. 钙钛矿型铁电氧化物表面结构与功能的控制及其潜在应用. 物理学报, 2020, 69(21): 217709. doi: 10.7498/aps.69.20200884
    [13] 谭丛兵, 钟向丽, 王金斌. 铁电材料中的极性拓扑结构. 物理学报, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [14] 崔宗杨, 谢忠帅, 汪尧进, 袁国亮, 刘俊明. 钙钛矿铁电半导体的光催化研究现状及其展望. 物理学报, 2020, 69(12): 127706. doi: 10.7498/aps.69.20200287
    [15] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展. 物理学报, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [16] 朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊. 缺陷离子调控对BiFeO3-BaTiO3基钙钛矿材料的铁电光伏特性影响. 物理学报, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [17] 邵梓桥, 毕恒昌, 谢骁, 万能, 孙立涛. 三氧化钨/氧化银复合材料的水热法合成及其光催化降解性能研究. 物理学报, 2018, 67(16): 167802. doi: 10.7498/aps.67.20180663
    [18] 李佩欣, 冯铭扬, 吴彩平, 李少波, 侯磊田, 马嘉赛, 殷春浩. 基于电子顺磁共振的锌卟啉敏化TiO2光催化性机理的研究. 物理学报, 2015, 64(13): 137601. doi: 10.7498/aps.64.137601
    [19] 赵娟, 胡慧芳, 曾亚萍, 程彩萍. 花状硫化铜级次纳米结构的制备及可见光催化活性研究. 物理学报, 2013, 62(15): 158104. doi: 10.7498/aps.62.158104
    [20] 梁培, 王乐, 熊斯雨, 董前民, 李晓艳. Mo-X(B, C, N, O, F)共掺杂TiO2体系的光催化协同效应研究. 物理学报, 2012, 61(5): 053101. doi: 10.7498/aps.61.053101
计量
  • 文章访问数:  9843
  • PDF下载量:  754
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-18
  • 修回日期:  2017-06-01
  • 刊出日期:  2017-08-05

/

返回文章
返回