搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超冷铯Rydberg原子的Autler-Townes分裂

薛咏梅 郝丽萍 焦月春 韩小萱 白素英 赵建明 贾锁堂

引用本文:
Citation:

超冷铯Rydberg原子的Autler-Townes分裂

薛咏梅, 郝丽萍, 焦月春, 韩小萱, 白素英, 赵建明, 贾锁堂

Autler-Townes splitting of ultracold cesium Rydberg atoms

Xue Yong-Mei, Hao Li-Ping, Jiao Yue-Chun, Han Xiao-Xuan, Bai Su-Ying, Zhao Jian-Ming, Jia Suo-Tang
PDF
导出引用
  • 主要研究超冷铯Rydberg原子阶梯型三能级系统的Autler-Townes(A-T)分裂.铯原子基态6S1/2、第一激发态6P3/2和Rydberg态形成阶梯型三能级系统,强耦合光共振作用于6P3/2(F'=5)34D5/2的跃迁,探测光由偏振光谱锁定在6S1/2(F=4)6P3/2(F'=5)的跃迁,并由双通的声光调制器在其共振跃迁附近扫描,形成的Rydberg原子A-T分裂谱由单光子计数器探测.A-T光谱的双峰间距与耦合光的拉比频率成正比,实验结果与理论计算在耦合光拉比频率c29 MHz时符合得很好,在拉比频率c29 MHz时,测量的A-T分裂比理论计算值小13%.产生偏差的主要原因是由于较大的耦合光拉比频率c增加了激发的Rydberg原子数,Rydberg原子间的相互作用产生了较大的退相干率所致.
    Autler-Townes (A-T) splitting, known as an AC Stark effect, shows a change of an absorption/emission spectral line of a probe beam when an oscillating field is tuned in resonance with the atomic or molecular transition. The A-T splitting is observed in different three-level atoms and widely investigated in a vapor cell and in a magneto-optical trap (MOT). The A-T splitting plays an important role in the atom-based microwave electric-field measurements where a cascade three-level system involving Rydberg state is adopted. In this work, an A-T splitting is observed in an ultracold cesium Rydberg gas, which is cooled down to about 100 pK and center density is about 1010 cm-3 in a conventional MOT by using the laser cooling technology. We present the A-T spectrum in a ladder three-level atomic system involving a 34D5/2 Rydberg state. The cesium ground state (6S1/2), excited state (6P3/2) and Rydberg state (34D5/2) constitute a Rydberg three-level system. A coupling laser, locked to the Rydberg transition by using a Rydberg electromagnetically induced transparency signal that is obtained from a cesium room-temperature vapor cell, couples 6P3/2 (F'=5) 34D5/2 Rydberg transition. A weak probe laser, stabilized to a ground-state transition by using a polarization spectroscopy, is swept, covering the transition 6S1/2 (F=4) 6P3/2 (F'=5) with a double-passed acousto-optic modulator. The probe and coupling lasers are counter-propagated through the MOT center. The power of probe light is 200 pW, corresponding Rabi frequency p=21.05 MHz. During the experiment, 50 s after turning off the trapping laser, both the coupling and probe beams are switched on and last 100 s. The A-T spectrum as a function of the probe detuning is detected with a single-photon counter module detector. We use Gaussian multiple peak fitting to obtain the positions of the A-T peaks and the A-T splitting. The measured A-T splitting is proportional to the Rabi frequency of the coupling light. We numerically solve the density matrix equations to obtain the A-T spectrum, and the calculations reproduce A-T spectra well. The measured A-T splitting shows good agreement with the theoretical calculation for Rabi frequency of the coupling light c29 MHz. The A-T splitting is less than the calculation for the case of c29 MHz, the deviation is mainly attributed to the increased dephasing rate induced by the strong interaction between Rydberg atoms, whose number increases with the coupling laser Rabi frequency. In this work, the adopted method for the cascade three-level system involving Rydberg state is also suitable for -and V-type cases.
    • 基金项目: 国家重点研发计划(批准号:2017YFA0304203)、国家自然科学基金(批准号:11274209,61475090,61775124)、长江学者和创新团队发展计划(批准号:IRT13076)、国家自然科学基金重点项目(批准号:11434007)和山西省留学基金(批准号:2014-009)资助的课题.
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 11274209, 61475090, 61775124), the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the Key Program of the National Natural Science Foundation of China (Grant No. 11434007), and the Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2014-009).
    [1]

    Autler S H, Townes C H 1955 Phys. Rev. 100 703

    [2]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp225-230

    [3]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106

    [4]

    Picque J L, Pinard J 1976 J. Phys. B 9 L77

    [5]

    Cahuzac P, Vetter R 1976 Phys. Rev. A 14 270

    [6]

    Mitsunaga M, Imoto N 1999 Phys. Rev. A 59 4773

    [7]

    Liang Q, Yang B, Yang J, Zhang T, Wang J 2010 Chin. Phys. B 19 113207

    [8]

    Baur M, Filipp S, Bianchetti R, Fink J M, Gppl M, Steffen L, Leek P J, Blais A, Wallraff A 2009 Phys. Rev. Lett. 102 243602

    [9]

    Sillanp M A, Li J, Cicak K, Altomare F, Park J I, Simmonds R W 2009 Phys. Rev. Lett. 103 193601

    [10]

    Ahmed E, Hansson A, Qi P, Kirova T, Lazoudis A, Kotochigova S, Lyyra A M, Li L, Qi J, Magnier S 2006 J. Chem. Phys. 124 084308

    [11]

    Piotrowicz M J, Maccormick C, Kowalczyk A, Bergamini S, Beterov I I, Yakshina E A 2011 New J. Phys. 13 093012

    [12]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp38-49

    [13]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [14]

    Feng Z G, Zhang H, Che J L, Zhang L J, Li C Y, Zhao J M, Jia S T 2011 Phys. Rev. A 83 042711

    [15]

    Teo B K, Feldbaum D, Cubel T, Guest J R, Berman P R, Raithel G 2003 Phys. Rev. A 68 053407

    [16]

    Zhang H, Wang L M, Chen J, Bao S X, Zhang L J, Zhao J M, Jia S T 2013 Phys. Rev. A 87 033835

    [17]

    DeSalvo B J, Aman J A, Gaul C, Pohl T, Yoshida S, Burgdrfer J, Hazzard K R A, Dunning F B, Killian T C 2016 Phys. Rev. A 93 022709

    [18]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [19]

    Gorniaczyk H, Tresp C, Schmidt J, Fedder H, Hofferberth S 2014 Phys. Rev. Lett. 113 053601

    [20]

    Viscor D, Li W, Lesanovsky I 2015 New J. Phys. 17 033007

    [21]

    Sedlacek J, Schwettmann A, Kubler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [22]

    Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B 35 5141

    [23]

    Jiao Y C, Li J K, Wang L M, Zhang H, Zhang L J, Zhao J M, Jia S T 2016 Chin. Phys. B 25 053201

    [24]

    Zhang H, Zhang L J, Wang L M, Bao S X, Zhao J M, Jia S T 2014 Phys. Rev. A 90 043849

  • [1]

    Autler S H, Townes C H 1955 Phys. Rev. 100 703

    [2]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp225-230

    [3]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106

    [4]

    Picque J L, Pinard J 1976 J. Phys. B 9 L77

    [5]

    Cahuzac P, Vetter R 1976 Phys. Rev. A 14 270

    [6]

    Mitsunaga M, Imoto N 1999 Phys. Rev. A 59 4773

    [7]

    Liang Q, Yang B, Yang J, Zhang T, Wang J 2010 Chin. Phys. B 19 113207

    [8]

    Baur M, Filipp S, Bianchetti R, Fink J M, Gppl M, Steffen L, Leek P J, Blais A, Wallraff A 2009 Phys. Rev. Lett. 102 243602

    [9]

    Sillanp M A, Li J, Cicak K, Altomare F, Park J I, Simmonds R W 2009 Phys. Rev. Lett. 103 193601

    [10]

    Ahmed E, Hansson A, Qi P, Kirova T, Lazoudis A, Kotochigova S, Lyyra A M, Li L, Qi J, Magnier S 2006 J. Chem. Phys. 124 084308

    [11]

    Piotrowicz M J, Maccormick C, Kowalczyk A, Bergamini S, Beterov I I, Yakshina E A 2011 New J. Phys. 13 093012

    [12]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp38-49

    [13]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [14]

    Feng Z G, Zhang H, Che J L, Zhang L J, Li C Y, Zhao J M, Jia S T 2011 Phys. Rev. A 83 042711

    [15]

    Teo B K, Feldbaum D, Cubel T, Guest J R, Berman P R, Raithel G 2003 Phys. Rev. A 68 053407

    [16]

    Zhang H, Wang L M, Chen J, Bao S X, Zhang L J, Zhao J M, Jia S T 2013 Phys. Rev. A 87 033835

    [17]

    DeSalvo B J, Aman J A, Gaul C, Pohl T, Yoshida S, Burgdrfer J, Hazzard K R A, Dunning F B, Killian T C 2016 Phys. Rev. A 93 022709

    [18]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [19]

    Gorniaczyk H, Tresp C, Schmidt J, Fedder H, Hofferberth S 2014 Phys. Rev. Lett. 113 053601

    [20]

    Viscor D, Li W, Lesanovsky I 2015 New J. Phys. 17 033007

    [21]

    Sedlacek J, Schwettmann A, Kubler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [22]

    Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B 35 5141

    [23]

    Jiao Y C, Li J K, Wang L M, Zhang H, Zhang L J, Zhao J M, Jia S T 2016 Chin. Phys. B 25 053201

    [24]

    Zhang H, Zhang L J, Wang L M, Bao S X, Zhao J M, Jia S T 2014 Phys. Rev. A 90 043849

  • [1] 武博, 林沂, 吴逢川, 陈孝樟, 安强, 刘燚, 付云起. 基于平行板谐振器的量子微波电场测量技术. 物理学报, 2023, 72(3): 034204. doi: 10.7498/aps.72.20221582
    [2] 薛咏梅, 郝丽萍, 樊佳蓓, 焦月春, 赵建明. Rydberg原子nS1/2→(n + 1)S1/2双光子激发EIT-AT光谱. 物理学报, 2022, 71(4): 043202. doi: 10.7498/aps.71.20211458
    [3] 王丹, 郭瑞翔, 戴玉鹏, 周海涛. 基于简并四波混频的双信道双频段增益谱. 物理学报, 2021, 70(10): 104204. doi: 10.7498/aps.70.20201778
    [4] 刘强, 何军, 王军民. 室温铯原子气室窄线宽相干布居振荡光谱. 物理学报, 2021, 70(16): 163202. doi: 10.7498/aps.70.20210405
    [5] 樊佳蓓, 郝丽萍, 白景旭, 焦月春, 赵建明, 贾锁堂. 基于Rydberg原子的高灵敏微波探测与通信. 物理学报, 2021, 70(6): 063201. doi: 10.7498/aps.70.20201401
    [6] 薛咏梅, 郝丽萍, 樊佳蓓, 焦月春, 赵建明. Rydberg原子nS1/2→(n+1)S1/2双光子激发EIT-AT光谱. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211458
    [7] 陈志文, 佘圳跃, 廖开宇, 黄巍, 颜辉, 朱诗亮. 基于Rydberg原子天线的太赫兹测量. 物理学报, 2021, 70(6): 060702. doi: 10.7498/aps.70.20201870
    [8] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [9] 焦月春, 赵建明, 贾锁堂. 基于Rydberg原子的超宽频带射频传感器. 物理学报, 2018, 67(7): 073201. doi: 10.7498/aps.67.20172636
    [10] 樊佳蓓, 焦月春, 郝丽萍, 薛咏梅, 赵建明, 贾锁堂. Rydberg原子的微波电磁感应透明-Autler-Townes光谱. 物理学报, 2018, 67(9): 093201. doi: 10.7498/aps.67.20172645
    [11] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明. 物理学报, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [12] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明. 物理学报, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [13] 王丽梅, 张好, 李昌勇, 赵建明, 贾锁堂. 铯Rydberg原子Stark态的避免交叉. 物理学报, 2013, 62(1): 013201. doi: 10.7498/aps.62.013201
    [14] 王勇, 张好, 陈杰, 王丽梅, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷nS Rydberg原子的态转移. 物理学报, 2013, 62(9): 093201. doi: 10.7498/aps.62.093201
    [15] 车俊岭, 张好, 冯志刚, 张临杰, 赵建明, 贾锁堂. 70S超冷Cs Rydberg原子的动力学演化. 物理学报, 2012, 61(4): 043205. doi: 10.7498/aps.61.043205
    [16] 冯志刚, 张好, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷铯Rydberg原子寿命的测量. 物理学报, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [17] 朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂. Cs 39D态Rydberg原子Stark光谱的实验研究. 物理学报, 2010, 59(4): 2401-2405. doi: 10.7498/aps.59.2401
    [18] 孟慧艳, 康 帅, 史庭云, 詹明生. 平行电磁场中的Rydberg锂原子吸收谱的模型势计算. 物理学报, 2007, 56(6): 3198-3204. doi: 10.7498/aps.56.3198
    [19] 周青春, 祝世宁. Λ型三能级原子与数态单模光场互作用系统的纠缠特性. 物理学报, 2005, 54(5): 2043-2048. doi: 10.7498/aps.54.2043
    [20] 唐建志, 许祥源, 黄雯, 赵文正. Ru原子Rydberg态的能级结构. 物理学报, 1990, 39(10): 1531-1535. doi: 10.7498/aps.39.1531
计量
  • 文章访问数:  6232
  • PDF下载量:  302
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-08
  • 修回日期:  2017-07-27
  • 刊出日期:  2017-11-05

/

返回文章
返回