搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多铁纳磁体的择多逻辑门三维磁化动态特性研究

危波 蔡理 杨晓阔 李成

引用本文:
Citation:

基于多铁纳磁体的择多逻辑门三维磁化动态特性研究

危波, 蔡理, 杨晓阔, 李成

Three-dimensional magnetization dynamics in majority gate studied by using multiferroic nanomagnet

Wei Bo, Cai Li, Yang Xiao-Kuo, Li Cheng
PDF
导出引用
  • 建立了多铁纳磁体择多逻辑门的三维磁化动态模型,并施加应变时钟(应力或电压)对多铁择多逻辑门的择多计算功能进行了动态仿真,同时分析了应变时钟工作机制以及它与择多逻辑门可靠转换之间的关系.仿真结果表明所建三维动态模型准确地描述了择多逻辑门的工作机制,在30 MPa应力作用下,择多逻辑门接受新输入实现了正确的择多计算功能.研究还发现对中心纳磁体和输出纳磁体依次撤去应变时钟时,提前撤去输出纳磁体上的应力会降低择多逻辑门的正确计算概率,而延迟撤去输出纳磁体上的应力会降低择多逻辑门的工作频率.研究结果深化了人们对多铁择多逻辑门动态特性的认识,可为多铁逻辑电路的设计提供重要指导.
    The scaling of traditional complementary metal oxide semiconductor (CMOS) device is reaching its physical limit, and alternative emerging devices are being explored as possible CMOS substitutes. One of the most promising device technologies is nano-magnetic logic (NML), which is an energy-efficient computing paradigm. The inherent nonvolatility and low energy consumption make NML device possess wide application perspectives. The basic element of multiferroic NML is a sub-100 nm sized single domain magnet. Generally, the x-y plane determines the in-plane dimension, while the z direction indicates the thickness of nanomagnet. Classical binary logic states 0 and 1 are encoded in two stable magnetization orientations along the easy axis (major axis) of the elliptical nanomagnet, while the hard axis (minor axis) refers to null logic. In order to propagate logic bits between the neighbor nanomagnets, one requires a clock that periodically flips every magnet's magnetization along the hard axis simultaneously, and the dipole-dipole interaction between the neighbors will force the magnet into the correct orientation along the easy axis, and thus the logic bit propagates unidirectionally. In multiferroic NML, the majority gate is a basic element of nanomagnet logcal circuit. In this paper, the three-dimensional switching dynamic model of a multiferroic nanomagnetic majority gate is established, and its magnetization dynamics is simulated by solving the Landau-Lifshitz-Gilbert equation with considering the thermal fluctuation effects. The majority gate is implemented with dipole-coupled two-phase (magnetostrictive/piezoelectric) multiferroic elements and is simulated by using different strain clocks and changing the input. It is found that the majority gate works efficiently and correctly when receiving new input. It is also found that the optimal time interval of stress releasing between central nanomagnet and output nanomagnet is 0.1-0.2 ns. Removing stress earlier will reduce the success rate of the majority gate operation while the work frequency increases. The reason behind the phenomenon may be that removing stress earlier results in weak dipole-coupled interaction, which cannot overcome the shape anisotropy. These findings are beneficial to the design of multiferroic logic circuit.
      通信作者: 蔡理, qianglicai@163.com
    • 基金项目: 国家自然科学基金(批准号:11405270)和空军工程大学理学院博士后科研启动基金(批准号:2015BSKYQD03,2016KYMZ06)资助的课题.
      Corresponding author: Cai Li, qianglicai@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11405270) and the Scientific Research Foundation for Postdoctor of Air Force Engineering University, China (Grant Nos. 2015BSKYQD03, 2016KYMZ06).
    [1]

    Cowburn R P, Welland M E 2000 Science 287 1466

    [2]

    Csaba G, Imre A, Bernstein G H, Porod W, Metlushko V 2002 IEEE Trans. Nanotechnol. 1 209

    [3]

    Vacca M, Graziano M, Crescenzo L D, Chiolerio A, Lamberti A, Balma D, Canavese C, Celegato F, Enrico E, Tiberto P, Boarino L, Zamboni M 2014 IEEE Trans. Nanotechnol. 13 963

    [4]

    Imre A, Csaba G, Ji L, Orlov A, Bernstein G H, Porod W 2006 Science 311 205

    [5]

    Niemier M T, Bernstein G H, Dingler A, Hu X S, Kurtz S, Liu S, Nahas J, Porod W, Siddiq M, Varga E 2011 J. Phys.: Condens. Matter 23 493202

    [6]

    Yang X K, Zhang B, Cui H Q, Li W W, Wang S 2016 Acta Phys. Sin. 65 237502 (in Chinese) [杨晓阔, 张斌, 崔焕卿, 李伟伟, 王森 2016 物理学报 65 237502]

    [7]

    Tiercelin N, Dusch Y, Klimov A, Giordano S, Preobrazhensky V, Pernod P 2011 Appl. Phys. Lett. 99 192507

    [8]

    Atulasimha J, Bandyopadhyay S 2010 Appl. Phys. Lett. 97 173105

    [9]

    Zhang N, Zhang B, Yang M Y, Cai K M, Sheng Y, Li Y C, Deng Y C, Wang K Y 2017 Acta Phys. Sin. 66 027501 (in Chinese) [张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友 2017 物理学报 66 027501]

    [10]

    Alam M T, Kurtz S J, Siddiq M A J, Niemier M T, Bernstein G H, Hu X S, Porod W 2012 IEEE Trans. Nanotechnol. 11 273

    [11]

    Zhang M L, Cai L, Yang X K, Qing T, Liu X Q, Feng C W, Wang S 2014 Acta Phys. Sin. 63 227503 (in Chinese) [张明亮, 蔡理, 杨晓阔, 秦涛, 刘小强, 冯朝文, 王森 2014 物理学报 63 227503]

    [12]

    Bhowmik D, You L, Salahuddin S 2014 Nat. Nanotechnol. 9 59

    [13]

    Ralph D C, Stiles M D 2008 J. Magn. Magn. Mater. 320 1190

    [14]

    Fashami M S, Roy K, Atulasimha J, Bandyopadhyay S 2011 Nanotechnology 22 155201

    [15]

    Souza N D, Fashami M S, Bandyopadhyay S, Atulasimha J 2016 Nano Lett. 16 1609

    [16]

    Biswas A K, Ahmad H, Atulasimha J, Bandyopadhyay S 2017 Nano Lett. 17 3478

    [17]

    Yilmaz Y, Mazumder P 2013 IEEE Trans. VLSI Syst. 21 1181

    [18]

    Yang X K, Cai L, Kang Q, Bai P, Zhao X H, Feng C W, Zhang L S 2011 Acta Phys. Sin. 60 098503 (in Chinese) [杨晓阔, 蔡理, 康强, 柏鹏, 赵晓辉, 冯朝文, 张立森 2011 物理学报 60 098503]

    [19]

    Chikazumi S 1964 Physics of Magnetism (New York: Wiley) p25

    [20]

    Fidler J, Schrefl T 2000 J. Phys. D: Appl. Phys. 33 R135

    [21]

    Brown W F 1963 Phys. Rev. 130 1677

    [22]

    Fashami M S, Roy K, Atulasimha J, Bandyopadyay S 2011 Nanotechnology 22 309501

  • [1]

    Cowburn R P, Welland M E 2000 Science 287 1466

    [2]

    Csaba G, Imre A, Bernstein G H, Porod W, Metlushko V 2002 IEEE Trans. Nanotechnol. 1 209

    [3]

    Vacca M, Graziano M, Crescenzo L D, Chiolerio A, Lamberti A, Balma D, Canavese C, Celegato F, Enrico E, Tiberto P, Boarino L, Zamboni M 2014 IEEE Trans. Nanotechnol. 13 963

    [4]

    Imre A, Csaba G, Ji L, Orlov A, Bernstein G H, Porod W 2006 Science 311 205

    [5]

    Niemier M T, Bernstein G H, Dingler A, Hu X S, Kurtz S, Liu S, Nahas J, Porod W, Siddiq M, Varga E 2011 J. Phys.: Condens. Matter 23 493202

    [6]

    Yang X K, Zhang B, Cui H Q, Li W W, Wang S 2016 Acta Phys. Sin. 65 237502 (in Chinese) [杨晓阔, 张斌, 崔焕卿, 李伟伟, 王森 2016 物理学报 65 237502]

    [7]

    Tiercelin N, Dusch Y, Klimov A, Giordano S, Preobrazhensky V, Pernod P 2011 Appl. Phys. Lett. 99 192507

    [8]

    Atulasimha J, Bandyopadhyay S 2010 Appl. Phys. Lett. 97 173105

    [9]

    Zhang N, Zhang B, Yang M Y, Cai K M, Sheng Y, Li Y C, Deng Y C, Wang K Y 2017 Acta Phys. Sin. 66 027501 (in Chinese) [张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友 2017 物理学报 66 027501]

    [10]

    Alam M T, Kurtz S J, Siddiq M A J, Niemier M T, Bernstein G H, Hu X S, Porod W 2012 IEEE Trans. Nanotechnol. 11 273

    [11]

    Zhang M L, Cai L, Yang X K, Qing T, Liu X Q, Feng C W, Wang S 2014 Acta Phys. Sin. 63 227503 (in Chinese) [张明亮, 蔡理, 杨晓阔, 秦涛, 刘小强, 冯朝文, 王森 2014 物理学报 63 227503]

    [12]

    Bhowmik D, You L, Salahuddin S 2014 Nat. Nanotechnol. 9 59

    [13]

    Ralph D C, Stiles M D 2008 J. Magn. Magn. Mater. 320 1190

    [14]

    Fashami M S, Roy K, Atulasimha J, Bandyopadhyay S 2011 Nanotechnology 22 155201

    [15]

    Souza N D, Fashami M S, Bandyopadhyay S, Atulasimha J 2016 Nano Lett. 16 1609

    [16]

    Biswas A K, Ahmad H, Atulasimha J, Bandyopadhyay S 2017 Nano Lett. 17 3478

    [17]

    Yilmaz Y, Mazumder P 2013 IEEE Trans. VLSI Syst. 21 1181

    [18]

    Yang X K, Cai L, Kang Q, Bai P, Zhao X H, Feng C W, Zhang L S 2011 Acta Phys. Sin. 60 098503 (in Chinese) [杨晓阔, 蔡理, 康强, 柏鹏, 赵晓辉, 冯朝文, 张立森 2011 物理学报 60 098503]

    [19]

    Chikazumi S 1964 Physics of Magnetism (New York: Wiley) p25

    [20]

    Fidler J, Schrefl T 2000 J. Phys. D: Appl. Phys. 33 R135

    [21]

    Brown W F 1963 Phys. Rev. 130 1677

    [22]

    Fashami M S, Roy K, Atulasimha J, Bandyopadyay S 2011 Nanotechnology 22 309501

  • [1] 陈龙, 檀聪琦, 崔作君, 段萍, 安宇豪, 陈俊宇, 周丽娜. 电子非广延分布的多离子磁化等离子体鞘层特性. 物理学报, 2024, 73(5): 055201. doi: 10.7498/aps.73.20231452
    [2] 解晓洁, 孙俊松, 秦吉红, 郭怀明. 弯曲应变下六角晶格量子反铁磁体的赝朗道能级. 物理学报, 2024, 73(2): 020202. doi: 10.7498/aps.73.20231231
    [3] 权东晓, 吕晓杰, 张雯菲. 多逻辑比特表面码结构设计及其逻辑CNOT门实现. 物理学报, 2024, 73(4): 040304. doi: 10.7498/aps.73.20231138
    [4] 豆树清, 杨晓阔, 夏永顺, 袁佳卉, 崔焕卿, 危波, 白馨, 冯朝文. 一种基于异质多铁结构全局应变时钟的纳磁体择多逻辑门. 物理学报, 2023, 72(15): 157501. doi: 10.7498/aps.72.20230866
    [5] 上官丹骅, 闫威华, 魏军侠, 高志明, 陈艺冰, 姬志成. 多物理耦合计算中动态输运问题高效蒙特卡罗模拟方法. 物理学报, 2022, 71(9): 090501. doi: 10.7498/aps.71.20211474
    [6] 刘腾, 陆鹏飞, 胡碧莹, 吴昊, 劳祺峰, 边纪, 刘泱, 朱峰, 罗乐. 离子阱中以声子为媒介的多体量子纠缠与逻辑门. 物理学报, 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [7] 陈亚博, 杨晓阔, 危波, 吴瞳, 刘嘉豪, 张明亮, 崔焕卿, 董丹娜, 蔡理. 非对称条形纳磁体的铁磁共振频率和自旋波模式. 物理学报, 2020, 69(5): 057501. doi: 10.7498/aps.69.20191622
    [8] 刘嘉豪, 杨晓阔, 危波, 李成, 张明亮, 李闯, 董丹娜. 基于倾斜纳磁体翻转倾向性的与(或)逻辑门应力模型. 物理学报, 2019, 68(1): 017501. doi: 10.7498/aps.68.20181621
    [9] 宋骁, 高兴森, 刘俊明. 微纳尺度多铁异质结中电驱动磁反转. 物理学报, 2018, 67(15): 157512. doi: 10.7498/aps.67.20181219
    [10] 王森, 蔡理, 崔焕卿, 冯朝文, 王峻, 齐凯. 基于钴和坡莫合金纳磁体的全自旋逻辑器件开关特性研究. 物理学报, 2016, 65(9): 098501. doi: 10.7498/aps.65.098501
    [11] 杨晓阔, 张斌, 崔焕卿, 李伟伟, 王森. 基于多铁逻辑的铁磁耦合互连线磁化动态模拟. 物理学报, 2016, 65(23): 237502. doi: 10.7498/aps.65.237502
    [12] 张明亮, 蔡理, 杨晓阔, 秦涛, 刘小强, 冯朝文, 王森. 基于交换作用的纳磁逻辑电路片上时钟结构研究. 物理学报, 2014, 63(22): 227503. doi: 10.7498/aps.63.227503
    [13] 李慧, 林鹏, 张春熹. 有leader的二阶动态多智能体网络的L2—L∞控制. 物理学报, 2009, 58(1): 158-164. doi: 10.7498/aps.58.158
    [14] 仲崇贵, 蒋青, 方靖淮, 江学范, 罗礼进. 1-3型纳米多铁复合薄膜中电场诱导的磁化研究. 物理学报, 2009, 58(10): 7227-7234. doi: 10.7498/aps.58.7227
    [15] 刘天亮, 黄海军. 日常择路行为的多智能体模拟. 物理学报, 2007, 56(11): 6321-6325. doi: 10.7498/aps.56.6321
    [16] 丁志博, 姚淑德, 王 坤, 程 凯. Si(111)衬底上生长有多缓冲层的六方GaN晶格常数计算和应变分析. 物理学报, 2006, 55(6): 2977-2981. doi: 10.7498/aps.55.2977
    [17] 冯晓强, 侯 洵, 杨文正, 杨 青, 陈 烽. 基于细菌视紫红质光子逻辑门的实验研究. 物理学报, 2003, 52(11): 2803-2806. doi: 10.7498/aps.52.2803
    [18] 蒲富恪, 王鼎盛. 非均匀铁磁体自发磁化的平均场理论. 物理学报, 1978, 27(4): 439-447. doi: 10.7498/aps.27.439
    [19] 超导材料组. 多股Nb3Sn超导小磁体的研制. 物理学报, 1976, 25(3): 268-269. doi: 10.7498/aps.25.268
    [20] 曾杰. 多原子分子抗磁磁化率的计算. 物理学报, 1965, 21(8): 1573-1577. doi: 10.7498/aps.21.1573
计量
  • 文章访问数:  4623
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-27
  • 修回日期:  2017-07-25
  • 刊出日期:  2017-11-05

/

返回文章
返回