搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运用R矩阵方法研究低能电子与NO2分子的散射

朱冰 冯灏

引用本文:
Citation:

运用R矩阵方法研究低能电子与NO2分子的散射

朱冰, 冯灏

Electron scattering studies of NO2 radical using R-matrix method

Zhu Bing, Feng Hao
PDF
导出引用
  • 基于静电-交换和密耦合两种模型,采用R矩阵方法,研究了低能电子与二氧化氮自由基分子的积分散射截面和动量迁移散射截面,包括弹性散射和从电子基态到电子激发态的非弹性散射.采用aug-cc-pVTZ基组进行靶分子结构优化和散射研究.在密耦合模型中,包含6个电子的最低三个占据轨道1b2,1a1,2a1被冻结,其余17个电子自由运动在活化空间中,并给活化空间增加了2b1和7a1两个虚轨道.包含了所有垂直激发能小于20 eV的靶分子电子组态,得到了收敛的散射截面,并与最新理论和实验值进行了比较.当入射能量小于4 eV时,本文结果与实验值符合得更好,校正了以往部分理论结果在极低能量处过高的现象,表明关联效应对于极低能量散射是非常重要的.
    Nitrogen dioxide molecule plays an important role in modeling atmospheric process. It is a toxic gas and considered as an atmospheric pollutant due to its involvement in reactions that produce ground-level ozone. The electron scattering of NO2 molecule has been extensively studied, specifically at intermediate and high energies. The discrepancies between previous theoretical studies and experimental data at low impact energies (below 4 eV) suggest that the in-depth research should be carried out. The target optimized equilibrium geometry is computed at the highly accurate coupled cluster singles, doubles and perturbative triples[CCSD(T)] level in this study. The ab initio R-matrix method is employed to study the integral and momentum transfer cross sections of low-energy electron scattering from NO2 radical up to 10 eV. Two models including static-exchange and close-coupling approximation are used to reveal the dynamic interaction. The electronic excitation cross sections are computed from ground state to seven electronically allowed excited states. All target states whose vertical excitation energies are below 20 eV are included in the close-coupling expansions of the scattering system. In our CC model, six electrons are in the core orbitals 1a1, 2a1 and 1b2, and the remaining 17 electrons are free to occupy the 4a1, 5a1, 6a1, 7a1, 1b1, 2b1, 3b2, 4b2, and 1a2 orbitals. The aug-cc-pVTZ dunning basis sets are used to optimize the target structure and electron scattering. A Born closure procedure is used to account for the contribution of partial waves higher than l=4 to obtain cross sections. Two shape resonances found at 0.76 eV and 1.82 eV in this study are lower than previous theoretical calculations, but the comparisons with other theoretical calculations and experimental data show that the present R-matrix study not only agrees well with the experiments but also corrects the overestimations of total cross sections of some other theoretical data in the very low energy regions. To study the influence of electron correlations, 21, 82 and 107 target electronic configurations are used in the close coupling model calculations, respectively. The comparisons of integrated cross sections indicate that it is very important to include more target electronic configurations to obtain the converged scattering cross sections, which reveals the importance of electron correlations.
      通信作者: 冯灏, fenghao@mail.xhu.edu.cn
    • 基金项目: 四川省科技厅青年基金(批准号:2015JQ0042)和国家自然科学基金(批准号:11174236)资助的课题.
      Corresponding author: Feng Hao, fenghao@mail.xhu.edu.cn
    • Funds: Project supported by the Funds for Sichuan Distinguished Scientists, China (Grant No. 2015JQ0042) and the National Natural Science Foundation of China (Grant No. 11174236).
    [1]

    Tennyson J 2010 Phys. Rep. 491 29

    [2]

    Brunger M J, Buckman S J 2002 Phys. Rep. 357 215

    [3]

    Winstead C, McKoy V 2000 Adv. At. Mol. Phys. 43 111

    [4]

    Fuglestvedt J S, Isaksen I S A, Wang W C 1996 Clim. Change 34 405

    [5]

    Abedi A, Cieman P, Coupier B, Gulejova B, Buchanan G A, Marston G, Mason G, Scheier P, Mark T D 2004 J. Mass Spectrom. 232 147

    [6]

    Munjal H, Baluja K L, Tennyson J 2009 Phys. Rev. A 79 032712

    [7]

    Curik R, Gianturco F A, Lucchese R R, Sanna N 2001 J. Phys. B: At. Mol. Opt. Phys. 34 59

    [8]

    Gupta D, Naghma R, Vinodkumar M, Antony B 2013 J. Ele. Spectrosc. Rel. Phen. 191 71

    [9]

    Szmytkowski C, Maciag K, Krzysztofowich A M 1992 Chem. Phys. Lett. 190 141

    [10]

    Szmytkowski C, Mozejko P 2006 Opt. Appl. 36 543

    [11]

    Carr J M, Galiatsatos P G, Gorfinkiel J D, Harvey A G, Lysaght M A, Madden D, Masin Z, Plummer M, Tennyson J, Varambhia H N 2012 Eur. Phys. J. D 66 58

    [12]

    Burke P G 2011 R-Matrix Theory of Atomic Collisions: Application to Atomic, Molecular and Optical Processes (Berlin: Springer Press)

    [13]

    Gillan C J, Tennyson J, Burke P G 1995 Computational Methods for Electron-Molecule Collisions (New York: Plenum)

    [14]

    Faure A, Gorfinkiel J D, Morgan L A, Tennyson J 2002 Comput. Phys. Commun. 144 224

    [15]

    Morgan L A, Tennyson J, Gillan C J 1998 Comput. Phys. Commun. 114 120

    [16]

    Fu J, Zhu B, Zhang Y, Feng H, Sun W 2014 J. Phys. B: At. Mol. Opt. Phys. 47 195203

    [17]

    Leonardi E, Petrongolo C, Hirsch G, Buenker R J 1996 J. Chem. Phys. 105 9051

    [18]

    Lievin J, Delon A, Jost R 1998 J. Chem. Phys. 108 8931

    [19]

    Stockdale J A D, Compton R N, Hurst G S, Reinhardt P W 1969 J. Chem. Phys. 50 2176

    [20]

    Rangwala S A, Krishnakumar E, Kumar S V K 2003 Phys. Rev. A 68 052710

  • [1]

    Tennyson J 2010 Phys. Rep. 491 29

    [2]

    Brunger M J, Buckman S J 2002 Phys. Rep. 357 215

    [3]

    Winstead C, McKoy V 2000 Adv. At. Mol. Phys. 43 111

    [4]

    Fuglestvedt J S, Isaksen I S A, Wang W C 1996 Clim. Change 34 405

    [5]

    Abedi A, Cieman P, Coupier B, Gulejova B, Buchanan G A, Marston G, Mason G, Scheier P, Mark T D 2004 J. Mass Spectrom. 232 147

    [6]

    Munjal H, Baluja K L, Tennyson J 2009 Phys. Rev. A 79 032712

    [7]

    Curik R, Gianturco F A, Lucchese R R, Sanna N 2001 J. Phys. B: At. Mol. Opt. Phys. 34 59

    [8]

    Gupta D, Naghma R, Vinodkumar M, Antony B 2013 J. Ele. Spectrosc. Rel. Phen. 191 71

    [9]

    Szmytkowski C, Maciag K, Krzysztofowich A M 1992 Chem. Phys. Lett. 190 141

    [10]

    Szmytkowski C, Mozejko P 2006 Opt. Appl. 36 543

    [11]

    Carr J M, Galiatsatos P G, Gorfinkiel J D, Harvey A G, Lysaght M A, Madden D, Masin Z, Plummer M, Tennyson J, Varambhia H N 2012 Eur. Phys. J. D 66 58

    [12]

    Burke P G 2011 R-Matrix Theory of Atomic Collisions: Application to Atomic, Molecular and Optical Processes (Berlin: Springer Press)

    [13]

    Gillan C J, Tennyson J, Burke P G 1995 Computational Methods for Electron-Molecule Collisions (New York: Plenum)

    [14]

    Faure A, Gorfinkiel J D, Morgan L A, Tennyson J 2002 Comput. Phys. Commun. 144 224

    [15]

    Morgan L A, Tennyson J, Gillan C J 1998 Comput. Phys. Commun. 114 120

    [16]

    Fu J, Zhu B, Zhang Y, Feng H, Sun W 2014 J. Phys. B: At. Mol. Opt. Phys. 47 195203

    [17]

    Leonardi E, Petrongolo C, Hirsch G, Buenker R J 1996 J. Chem. Phys. 105 9051

    [18]

    Lievin J, Delon A, Jost R 1998 J. Chem. Phys. 108 8931

    [19]

    Stockdale J A D, Compton R N, Hurst G S, Reinhardt P W 1969 J. Chem. Phys. 50 2176

    [20]

    Rangwala S A, Krishnakumar E, Kumar S V K 2003 Phys. Rev. A 68 052710

  • [1] 宋萌萌, 周前红, 孙强, 张含天, 杨薇, 董烨. 电子散射和能量分配方式对电子输运系数的影响. 物理学报, 2021, 70(13): 135101. doi: 10.7498/aps.70.20202021
    [2] 李闯, 蔡理, 李伟伟, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 李成, 危波. 水合肼还原的氧化石墨烯吸附NO2的实验研究. 物理学报, 2019, 68(11): 118102. doi: 10.7498/aps.68.20182242
    [3] 曹渊, 田兴, 程刚, 刘锟, 王贵师, 朱公栋, 高晓明. 基于光纤耦合宽带LED光源的Herriott池 测量NO2的研究. 物理学报, 2019, 68(16): 164201. doi: 10.7498/aps.68.20190243
    [4] 黄文逍, 张逸竹, 阎天民, 江玉海. 超快强场下低能光电子的研究进展解析R矩阵半经典轨迹理论. 物理学报, 2016, 65(22): 223204. doi: 10.7498/aps.65.223204
    [5] 张辉, 杨洋, 李志青. 三维a-IGZO薄膜中的电子-电子散射. 物理学报, 2016, 65(16): 167301. doi: 10.7498/aps.65.167301
    [6] 段俊, 秦敏, 方武, 凌六一, 胡仁志, 卢雪, 沈兰兰, 王丹, 谢品华, 刘建国, 刘文清. 非相干宽带腔增强吸收光谱技术应用于实际大气亚硝酸的测量. 物理学报, 2015, 64(18): 180701. doi: 10.7498/aps.64.180701
    [7] 翁明, 胡天存, 曹猛, 徐伟军. 电子入射角度对聚酰亚胺二次电子发射系数的影响. 物理学报, 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [8] 郑勇林, 王晓茜, 葛泽玲, 郭红力, 严刚峰, 戴松晖, 朱晓玲, 田晓滨. 铁磁非铁磁夹层中电子自旋波的传输及应用. 物理学报, 2013, 62(22): 227701. doi: 10.7498/aps.62.227701
    [9] 胡明, 刘青林, 贾丁立, 李明达. n型有序多孔硅基氧化钨室温气敏性能研究. 物理学报, 2013, 62(5): 057102. doi: 10.7498/aps.62.057102
    [10] 田密, 张秋菊, 白易灵, 崔春红. 电子在线极化相对论强度驻波场中的散射研究. 物理学报, 2012, 61(20): 203401. doi: 10.7498/aps.61.203401
    [11] 费宏明, 周飞, 杨毅彪, 梁九卿. 光子晶体双量子阱的共振隧穿. 物理学报, 2011, 60(7): 074225. doi: 10.7498/aps.60.074225
    [12] 孙长平, 王国利, 周效信. F3+和Ne4+离子的光电离截面的理论计算. 物理学报, 2011, 60(5): 053202. doi: 10.7498/aps.60.053202
    [13] 王斌, 冯灏, 孙卫国, 曾阳阳, 戴伟. 低能电子与氢分子碰撞的振动激发积分散射截面的研究. 物理学报, 2009, 58(10): 6932-6937. doi: 10.7498/aps.58.6932
    [14] 施德恒, 孙金锋, 刘玉芳, 朱遵略, 马 恒. 50—5000 eV电子被C4H8O, C5H10O2, C6H5CH3和C4H8O2散射的总截面. 物理学报, 2008, 57(12): 7612-7618. doi: 10.7498/aps.57.7612
    [15] 施德恒, 孙金锋, 朱遵略, 刘玉芳. 一种考虑几何屏蔽效应的计算“电子-分子”散射总截面的可加性规则修正方法. 物理学报, 2008, 57(3): 1632-1639. doi: 10.7498/aps.57.1632
    [16] 施德恒, 孙金锋, 朱遵略, 杨向东, 刘玉芳, 马 恒. 中、高能电子被SO2分子散射的微分截面、动量转移截面及弹性积分截面. 物理学报, 2007, 56(8): 4435-4440. doi: 10.7498/aps.56.4435
    [17] 施德恒, 孙金锋, 刘玉芳, 马 恒, 朱遵略. 一种计算中、高能电子被分子散射总截面的修正势方法. 物理学报, 2006, 55(8): 4096-4102. doi: 10.7498/aps.55.4096
    [18] 施德恒, 孙金锋, 朱遵略, 刘玉芳, 杨向东. 中高能电子被O2及CF4分子散射的微分截面、弹性积分截面及动量转移截面. 物理学报, 2005, 54(8): 3548-3553. doi: 10.7498/aps.54.3548
    [19] 施德恒, 孙金锋, 杨向东, 朱遵略, 刘玉芳. 中高能电子被甲烷及氯代甲烷散射的总截面. 物理学报, 2005, 54(5): 2019-2024. doi: 10.7498/aps.54.2019
    [20] 任廷琦, 杨焕旺, 张怿慈. 原子刚性转子散射几率的密耦合波包法计算. 物理学报, 1992, 41(1): 18-25. doi: 10.7498/aps.41.18
计量
  • 文章访问数:  4087
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-21
  • 修回日期:  2017-09-09
  • 刊出日期:  2017-12-05

/

返回文章
返回