搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚大气压六相交流电弧等离子体射流特性研究:实验测量

郭恒 苏运波 李和平 曾实 聂秋月 李占贤 李志辉

引用本文:
Citation:

亚大气压六相交流电弧等离子体射流特性研究:实验测量

郭恒, 苏运波, 李和平, 曾实, 聂秋月, 李占贤, 李志辉

Characteristics of meso-pressure six-phase alternative current arc discharge plasma jet: Experiments

Guo Heng, Su Yun-Bo, Li He-Ping, Zeng Shi, Nie Qiu-Yue, Li Zhan-Xian, Li Zhi-Hui
PDF
导出引用
  • 以临近空间高超声速飞行器以及航天器再入大气环境飞行过程黑障问题的研究为背景,进行了多相交流电弧放电实验装置的物理设计,建立了六相交流电弧等离子体实验平台(MPX-2015),在背景压力为500 Pa的亚大气压条件下获得了最大直径和长度分别达到14.0 cm和60.0 cm的等离子体射流.研究了工作气体流量、真空腔压强、电极间距以及弧电流等因素对等离子体自由射流和冲击射流特性的影响规律.结果表明:在实验参数范围内,真空腔压强对等离子体的射流特性影响最为显著,等离子体自由射流的长度和直径以及冲击钝体条件下的鞘套有效工作长度和厚度均随着压强的降低而增大;提高沿电极环缝注入的工作气体流量或弧电流亦有利于等离子体鞘套尺寸的增加.上述工作有助于进一步开展临近空间飞行器与其周围复杂介质环境间复杂的气动热效应和黑障问题的研究.
    During the re-entry process of a supersonic vehicle in near space, the interaction between the flying vehicle and surrounding air is violent due to the hypersonic relative speed.As a consequence, the shock-heated air in the vicinity of the vehicle surface is ionized.Thus, the formed plasma layer operates in strong collision, non-uniform and nonequilibrium states.One of the serious system operation problems resulting from this non-equilibrium plasma layer is the so-called communication blackout.Physical simulation of the near-space plasma environment in laboratory based on various plasma sources is a much lower cost method than the in-situ measurements in the vehicle re-entry process.In this paper, based on the ideas for designing the dual jet direct current arc plasma and the muti-phase alternating current discharge plasma, a physical design on the multi-phase alternating discharge apparatus is proposed for generating a large volume plasma arc-jet.And a multi-phase gas discharge plasma experimental platform-2015(MPX-2015) is established with the image recording/processing, electrical and optical emission spectroscopy measurement system in this laboratory. The preliminary experimental observations show that under a typical operating condition with a 500 Pa background pressure, a large volume plasma jet with a maximum diameter of 14.0 cm and a maximum length of 60.0 cm is obtained on this newly developed platform.The influences of the gas flow rate, the chamber pressure, the electrode gap spacing and the arc current on the characteristics of the plasma free jet and impinging jet are also studied.The experimental results show that within the parameter ranges studied in this paper, the chamber pressure has a very significant influence on the size of the plasma jet, i.e., both the diameter and length of the plasma free jet increase with chamber pressure decreasing, and a similar variation trend is also observed for the thickness and length of the plasma layer surrounding a bluff body.In addition, the size of the plasma layer also increases with the increase of the plasma working gas flowrate and the discharge current.These results are helpful in the more in-depth investigating of the aerodynamic heat effect and blackout issue of the re-entry process of supersonic vehicle in near space in future.In the future research, we will modify the structures of the plasma generators in order to obtain supersonic plasma arc-jets, and study both the quasi-steady and transient characteristics of the arc plasmas, as well as the strong interactions among the plasma jet, the surrounding air and the solid bluff body.
      通信作者: 李和平, liheping@tsinghua.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB744100)资助的课题.
      Corresponding author: Li He-Ping, liheping@tsinghua.edu.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2014CB744100).
    [1]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecr. Rockets 45 445

    [2]

    Morris R A, Bench P M, Golden K E, Sutton E A 1999 37th Aerospace Sciences Meeting and Exhibit Reno, NV, USA, January 11-14, 1999 AIAA-99-0630

    [3]

    Evans J S, Schexnayder Jr C J, Huber P W 1973 NASA TN D-7332

    [4]

    Gillman E D, Foster J E, Blankson I M 2010 NASA/TM-2010-216220

    [5]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. 7 879

    [6]

    Mather D E, Pasqual J M, Sillence J P, Lewis P 2005 AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference Capua, Italy, May 16-20, 2005 AIAA-2005-3443

    [7]

    Akey N D 1971 NASA Special Publication 252 19

    [8]

    Watillon P, Berthe P, Chavagnac C 2003 AIAA/ICAS International Air and Space Symposium and Exposition:The Next 100 Years Dayton, OH, USA, July 14-17, 2003 AIAA-2003-2913

    [9]

    Shirouzu M, Yamamoto M 1996 Space Plane and Hypersonic Systems and Technology Conference Norfolk, VA, USA, November 18-22, 1996 AIAA-96-4524-CP

    [10]

    Yanagihara M, Munenaga T 2004 24th International Congress of the Aeronautical Sciences Yokohama, Japan, August 29-September 3, 2004 p2004-7

    [11]

    Sakurai H, Kobayasi M, Yamazaki I, Shirouzu M, Yamamoto M 1997 Acta Astronaut. 40 105

    [12]

    Auweter-Kurtz M, Kurtz H L, Laure S 1996 J. Propul. Power 12 1053

    [13]

    Zhao L, Liu X X, Su H S 2015 Journal of Telemetry Tracking and Command 36 28 (in Chinese)[赵良, 刘秀祥, 苏汉生 2015 遥测遥控 36 28]

    [14]

    Hermann T, Lhle S, Zander F, Fulge H, Fasoulas S 2016 J. Thermophys. Heat Transf. 30 673

    [15]

    Lemmer K M 2009 Ph. D. Dissertation (Ann Arbor:University of Michigan)

    [16]

    Yang M, Li X, Xie K, Liu Y, Liu D 2013 Phys. Plasmas 20 012101

    [17]

    Shashurin A, Zhuang T, Teel G, Keidar M, Kundrapu M, Loverich J, Beilis I I, Raitses Y 2014 J. Spacecr. Rockets 51 838

    [18]

    Zhang B L, Zhuang Z, Li Y W, Wang Y T, Duan P Z, Zhang M K 2017 High Voltage Engineering 43 3055 (in Chinese)[张百灵, 庄重, 李益文, 王宇天, 段朋振, 张茗柯 2017 高电压技术 43 3055]

    [19]

    Pan W, Zhang W, Zhang W, Wu C 2001 Plasma Chem. Plasma Process. 21 23

    [20]

    Fauchais P, Vardelle A 1997 IEEE Trans. Plasma Sci. 25 1258

    [21]

    Colombo V, Concetti A, Ghedini E, Rotundo F, Sanibondi P, Boselli M, Dallavalle S, Gherardi M, Nemchinsky V, Vancini M 2012 Plasma Chem. Plasma Process. 32 411

    [22]

    Vardelle A, Moreau C, Akedo J, et al. 2016 J. Therm. Spray Technol. 25 1376

    [23]

    Jin F, Li P, Ge N 2014 High Voltage Engineering 40 2057 (in Chinese)[金锋, 李鹏, 葛楠 2014 高电压技术 40 2057]

    [24]

    Riaby V A, Masherov P E, Obukhov V A, Savinov V P 2013 High Voltage Engineering 39 30596

    [25]

    25 Yao Y, Hossain M M, Watanabe T, Matsuura T, Funabiki F, Yano T 2008 Chem. Eng. J. 139 390

    [26]

    Watanabe T, Liu Y, Tanaka M 2014 Plasma Chem. Plasma Process. 34 443

    [27]

    Wang Z, Wu G Q, Ge N, Li H P, Bao C Y 2010 IEEE Trans. Plasma Sci. 38 2906

    [28]

    Raizer Y P 1991 Gas Discharge Physics (Berlin:Springer) p136

    [29]

    Zhang H, Wu G Q, Li H P, Bao C Y 2009 IEEE Trans. Plasma Sci. 37 1129

    [30]

    Mahmood S, Shaikh N M, Kalyar M A, Rafiq M, Piracha N K, Baig M A 2009 J. Quant. Spectrosc. Radiat. Transf. 110 1840

    [31]

    de Izarra C 2000 J. Phys. D:Appl. Phys. 33 1697

    [32]

    Park J, Henins I, Herrmann H W, Selwyn G S 2000 Phys. Plasmas 7 3141

    [33]

    Guo H, Zhang X N, Nie Q Y, Li H P, Zeng S, Li Z H 2018 Acta Phys. Sin. 67 055201 (in Chinese) [郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉 2018 物理学报 67 055201]

    [34]

    He L M, Lei J P, Chen Y, Liu X J, Chen G C, Zeng H 2017 High Voltage Engineering 43 3061 (in Chinese)[何立明, 雷健平, 陈一, 刘兴建, 陈高成, 曾昊 2017 高电压技术 43 3061]

    [35]

    Li X D, Zhang M, Zhu F S, Zhang H, Bo Z 2015 High Voltage Engineering 41 2022 (in Chinese)[李晓东, 张明, 朱凤森, 张浩, 薄拯 2015 高电压技术 41 2022]

    [36]

    Zhang H, He L, Yu J, Qi W, Chen G 2018 Plasma Sci. Technol. 20 024001

  • [1]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecr. Rockets 45 445

    [2]

    Morris R A, Bench P M, Golden K E, Sutton E A 1999 37th Aerospace Sciences Meeting and Exhibit Reno, NV, USA, January 11-14, 1999 AIAA-99-0630

    [3]

    Evans J S, Schexnayder Jr C J, Huber P W 1973 NASA TN D-7332

    [4]

    Gillman E D, Foster J E, Blankson I M 2010 NASA/TM-2010-216220

    [5]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. 7 879

    [6]

    Mather D E, Pasqual J M, Sillence J P, Lewis P 2005 AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference Capua, Italy, May 16-20, 2005 AIAA-2005-3443

    [7]

    Akey N D 1971 NASA Special Publication 252 19

    [8]

    Watillon P, Berthe P, Chavagnac C 2003 AIAA/ICAS International Air and Space Symposium and Exposition:The Next 100 Years Dayton, OH, USA, July 14-17, 2003 AIAA-2003-2913

    [9]

    Shirouzu M, Yamamoto M 1996 Space Plane and Hypersonic Systems and Technology Conference Norfolk, VA, USA, November 18-22, 1996 AIAA-96-4524-CP

    [10]

    Yanagihara M, Munenaga T 2004 24th International Congress of the Aeronautical Sciences Yokohama, Japan, August 29-September 3, 2004 p2004-7

    [11]

    Sakurai H, Kobayasi M, Yamazaki I, Shirouzu M, Yamamoto M 1997 Acta Astronaut. 40 105

    [12]

    Auweter-Kurtz M, Kurtz H L, Laure S 1996 J. Propul. Power 12 1053

    [13]

    Zhao L, Liu X X, Su H S 2015 Journal of Telemetry Tracking and Command 36 28 (in Chinese)[赵良, 刘秀祥, 苏汉生 2015 遥测遥控 36 28]

    [14]

    Hermann T, Lhle S, Zander F, Fulge H, Fasoulas S 2016 J. Thermophys. Heat Transf. 30 673

    [15]

    Lemmer K M 2009 Ph. D. Dissertation (Ann Arbor:University of Michigan)

    [16]

    Yang M, Li X, Xie K, Liu Y, Liu D 2013 Phys. Plasmas 20 012101

    [17]

    Shashurin A, Zhuang T, Teel G, Keidar M, Kundrapu M, Loverich J, Beilis I I, Raitses Y 2014 J. Spacecr. Rockets 51 838

    [18]

    Zhang B L, Zhuang Z, Li Y W, Wang Y T, Duan P Z, Zhang M K 2017 High Voltage Engineering 43 3055 (in Chinese)[张百灵, 庄重, 李益文, 王宇天, 段朋振, 张茗柯 2017 高电压技术 43 3055]

    [19]

    Pan W, Zhang W, Zhang W, Wu C 2001 Plasma Chem. Plasma Process. 21 23

    [20]

    Fauchais P, Vardelle A 1997 IEEE Trans. Plasma Sci. 25 1258

    [21]

    Colombo V, Concetti A, Ghedini E, Rotundo F, Sanibondi P, Boselli M, Dallavalle S, Gherardi M, Nemchinsky V, Vancini M 2012 Plasma Chem. Plasma Process. 32 411

    [22]

    Vardelle A, Moreau C, Akedo J, et al. 2016 J. Therm. Spray Technol. 25 1376

    [23]

    Jin F, Li P, Ge N 2014 High Voltage Engineering 40 2057 (in Chinese)[金锋, 李鹏, 葛楠 2014 高电压技术 40 2057]

    [24]

    Riaby V A, Masherov P E, Obukhov V A, Savinov V P 2013 High Voltage Engineering 39 30596

    [25]

    25 Yao Y, Hossain M M, Watanabe T, Matsuura T, Funabiki F, Yano T 2008 Chem. Eng. J. 139 390

    [26]

    Watanabe T, Liu Y, Tanaka M 2014 Plasma Chem. Plasma Process. 34 443

    [27]

    Wang Z, Wu G Q, Ge N, Li H P, Bao C Y 2010 IEEE Trans. Plasma Sci. 38 2906

    [28]

    Raizer Y P 1991 Gas Discharge Physics (Berlin:Springer) p136

    [29]

    Zhang H, Wu G Q, Li H P, Bao C Y 2009 IEEE Trans. Plasma Sci. 37 1129

    [30]

    Mahmood S, Shaikh N M, Kalyar M A, Rafiq M, Piracha N K, Baig M A 2009 J. Quant. Spectrosc. Radiat. Transf. 110 1840

    [31]

    de Izarra C 2000 J. Phys. D:Appl. Phys. 33 1697

    [32]

    Park J, Henins I, Herrmann H W, Selwyn G S 2000 Phys. Plasmas 7 3141

    [33]

    Guo H, Zhang X N, Nie Q Y, Li H P, Zeng S, Li Z H 2018 Acta Phys. Sin. 67 055201 (in Chinese) [郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉 2018 物理学报 67 055201]

    [34]

    He L M, Lei J P, Chen Y, Liu X J, Chen G C, Zeng H 2017 High Voltage Engineering 43 3061 (in Chinese)[何立明, 雷健平, 陈一, 刘兴建, 陈高成, 曾昊 2017 高电压技术 43 3061]

    [35]

    Li X D, Zhang M, Zhu F S, Zhang H, Bo Z 2015 High Voltage Engineering 41 2022 (in Chinese)[李晓东, 张明, 朱凤森, 张浩, 薄拯 2015 高电压技术 41 2022]

    [36]

    Zhang H, He L, Yu J, Qi W, Chen G 2018 Plasma Sci. Technol. 20 024001

  • [1] 刘坤, 项红甫, 周雄峰, 夏昊天, 李华. 固定功率下大气压交流氩气等离子体射流的光谱特性. 物理学报, 2023, 72(11): 115201. doi: 10.7498/aps.72.20230307
    [2] 陈忠琪, 钟安, 戴栋, 宁文军. 屏蔽气体流速对同轴双管式氦气大气压等离子体射流粒子分布的影响. 物理学报, 2022, 71(16): 165201. doi: 10.7498/aps.71.20220421
    [3] 朱彦熔, 常正实. 脉冲电压上升沿对He 大气压等离子体射流管内放电发展演化特性的影响. 物理学报, 2022, 71(2): 025202. doi: 10.7498/aps.71.20210470
    [4] 钟旺燊, 陈野力, 钱沐杨, 刘三秋, 张家良, 王德真. 大气压非平衡等离子体甲烷干法重整零维数值模拟. 物理学报, 2021, 70(7): 075206. doi: 10.7498/aps.70.20201700
    [5] 孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭. 大气压电晕等离子体射流制备氧化钛薄膜. 物理学报, 2021, 70(9): 095205. doi: 10.7498/aps.70.20202181
    [6] 张亚容, 韩乾翰, 郭颖, 张菁, 石建军. 大气压脉冲放电等离子体射流特性及机理研究. 物理学报, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [7] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [8] 陈坚, 刘志强, 郭恒, 李和平, 姜东君, 周明胜. 基于气体放电等离子体射流源的模拟离子引出实验平台物理特性. 物理学报, 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [9] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [10] 王建龙, 丁芳, 朱晓东. 高气压均匀直流辉光放电等离子体的光学特性. 物理学报, 2015, 64(4): 045206. doi: 10.7498/aps.64.045206
    [11] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟. 物理学报, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [12] 黄骏, 陈维, 李辉, 王鹏业, 杨思泽. 大气压冷等离子体射流灭活子宫颈癌Hela细胞. 物理学报, 2013, 62(6): 065201. doi: 10.7498/aps.62.065201
    [13] 王伟宗, 吴翊, 荣命哲, 杨飞. 局域热力学平衡态空气电弧等离子体输运参数计算研究. 物理学报, 2012, 61(10): 105201. doi: 10.7498/aps.61.105201
    [14] 陈俊英, 董丽芳, 李媛媛, 宋倩, 嵇亚飞. 大气压介质阻挡放电超四边形斑图的等离子体参量. 物理学报, 2012, 61(7): 075211. doi: 10.7498/aps.61.075211
    [15] 李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞. 大气压等离子体针产生空气均匀放电特性研究. 物理学报, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [16] 黄文同, 李寿哲, 王德真, 马腾才. 大气压下绝缘毛细管内等离子体放电及其特性研究. 物理学报, 2010, 59(6): 4110-4116. doi: 10.7498/aps.59.4110
    [17] 江南, 曹则贤. 一种大气压放电氦等离子体射流的实验研究. 物理学报, 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [18] 严建华, 屠 昕, 马增益, 潘新潮, 岑可法, Cheron Bruno. 大气压直流氩等离子体射流工作特性研究. 物理学报, 2006, 55(7): 3451-3457. doi: 10.7498/aps.55.3451
    [19] 孙 姣, 张家良, 王德真, 马腾才. 一种新型大气压毛细管介质阻挡放电冷等离子体射流技术. 物理学报, 2006, 55(1): 344-350. doi: 10.7498/aps.55.344
    [20] 王海达. 氩气直流放电等离子体中三稳现象的半经典理论. 物理学报, 1990, 39(12): 1928-1936. doi: 10.7498/aps.39.1928
计量
  • 文章访问数:  5607
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-29
  • 修回日期:  2018-01-04
  • 刊出日期:  2019-02-20

/

返回文章
返回