搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

芯帽纳米颗粒的光热性质

洪昕 王晨晨 刘江涛 王晓强 尹雪洁

引用本文:
Citation:

芯帽纳米颗粒的光热性质

洪昕, 王晨晨, 刘江涛, 王晓强, 尹雪洁

Photothermal properties of core-capped gold nanoparticles

Hong Xin, Wang Chen-Chen, Liu Jiang-Tao, Wang Xiao-Qiang, Yin Xue-Jie
PDF
导出引用
  • 贵金属纳米结构中的光热效应在肿瘤光热治疗、光热成像、纳米药物等领域具有重要的应用价值.各向异性的芯帽纳米结构以其丰富的可调结构参数和对激发光偏振态敏感的特性,可灵活地在近红外波段获得理想的光学吸收性质,从而可以实现温度的高效调节.本文基于有限元方法研究了颗粒物纳米结构参数对其光热效果的作用规律,数值结果表明:通过对结构参数的微量改变(包括金壳厚度、芯壳比、芯径、金属表面覆盖率等)可实现温度的显著调整;在偏振态的旋转范围(3070)内可快速地产生大温变光热的准线性调整.其不弱于纳米芯壳和纳米棒结构的光热性能可为纳米光热生医研究提供一种新的选择.
    Photothermal effects associated with noble metal nanostructures have shown wide potential applications in photo-thermal cancer therapy, photo-thermal imaging, nanomedicine, etc. These applications benefit from the localized surface plasmon resonance (LSPR) effect of the nanoparticles. Due to the LSPR effect, the nanoparticles exhibit unique optical properties such as strong scattering and absorption in the band ranging from visible to near-infrared region. The absorption enables the plasmonic nanoparticle to be a thermal source to increase the temperature of itself and the localized surrounding environment. Among these particels, the anisotropic core-capped nanostructures distinguish themselves by their strong polarization selectivity. The absorptions are different when the incident light is polarized in the directions vertical (90) and parallel (0) to its symmetry axis, respectively. At 90, a large red-shift can be achieved and the absorption cross section is greatly enhanced. Moreover, their absorption peaks can be flexibly manipulated by slightly adjusting one of the geometrical parameters. However, the photothermal responses to these parameters are left blank. In this paper, photothermal effects of SiO2@Au core-capped nanoparticles are studied based on the numerical finite elemental analysis method (COMSOL software). The thermal response to each of the paramenters, including shell thickness, core diameter, core-shell ratio, and metal surface coverage is achieved. The calculation shows that the temperature of these core-capped nanoparticles can be adjusted efficiently in the near infrared band by easily rotating the polarization, i.e. slightly adjusting the geometric parameters. Especially in a range between 30 and 70, the temperature varying with the polarization follows almost a linear relationship. The comparisons with other popular structures including solid sphere, core-shell and nanorod are also made. The results indicate that at a similar size, the core-capped structure can offer a higher temperature than solid spheres and core-shell structures. To obtain the same temperature variation, the core-capped one has a smaller size than a nanorod. The comparisons demonstrate that the core-capped structure can be an alternative to a high-efficient nano heat source in the photothemal applications.
      通信作者: 洪昕, hongxin@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:31271064)资助的课题.
      Corresponding author: Hong Xin, hongxin@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 31271064).
    [1]

    Cao J, Sun T, Grattan K T V 2014 Sens. Actuator B:Chem. 195 332

    [2]

    Petryayeva E, Krull U J 2011 Anal. Chim. Acta 706 8

    [3]

    Ortega-mendoza J G, Padilla-Vivanco A, Toxqui-Quitl C, Zaca-Morn P, Villegas-Hhernndez D, Chvez F 2014 Sensors 14 18701

    [4]

    Yang C C, Chu C K, Yu C K, Li M J, Chi T T, Kiang Y W, Tu Y C, Chang Y W 2014 Opt. Express 22 11754

    [5]

    Landsman M L, Kwant G, Mook G A, Zijlstra W G 1976 J. Appl. Physiol. 40 575

    [6]

    Wang C, Xu L G, Xu J T, Yang D, Liu B, Gai S L, He F, Yang P P 2017 Dalton Trans. 46 12147

    [7]

    Li J C, Hu Y, Yang J, Wei P, Sun W J, Shen M W, Zhang G X, Shi X Y 2015 Biomaterials 38 10

    [8]

    Truong N P, Whittaker M R, Mak C W, Davis T P 2015 Expert Opin. Drug Deliv. 12 129

    [9]

    Daraee H, Eatemadi A, Abbasi E, Aval S F, Kouhi M, Akbarzadeh A 2016 Artif. Cell. Nanomed. Biotechnol.44 1

    [10]

    Chen M, Tang S H, Guo Z D, Wang X Y, Mo S G, Huang X Q, Liu G, Zheng N F 2015 Adv. Mater. 26 8210

    [11]

    Jaque D, Mart -Nez M L, Del R B, Haro-Gonzalez P, Benayas A, Plaza J L 2014 Nanoscale 6 9494

    [12]

    Lee S M, Kim H J, Ha Y J, Park Y N, Lee S K, Park Y B, Yoo K H 2012 ACS Nano 7 50

    [13]

    Xing R T, Liu K, Jiao T F, Zhang N, Ma K, Zhang R Y, Zou Q L, Ma G H, Yan X H 2016 Adv. Mater. 28 3669

    [14]

    Smith A M, Mancini M C, Nie S 2009 Nat. Nanotechnol. 4 710

    [15]

    Oldenburg S J, Averitt R D, Westcott S L, Halas N J 1998 Chem. Phys. Lett. 288 243

    [16]

    Murphy C J, Sau T K, Gole A M, Orendorff C J, Gao J, Gou L, Hunyadi S E, Li T 2005 J. Phys. Chem. B 109 13857

    [17]

    Nehl C L, Liao H, Hafner J H 2006 Nano Lett. 6 683

    [18]

    Zhang X Y, Zhang T, Hu A, Song Y J, Duley W W 2012 Appl. Phys. Lett. 101 153118

    [19]

    Lee D, Yoon S 2015 J. Phys. Chem. C 119 7873

    [20]

    Gans R, ber D 1912 Ann. Phys. 342 881

    [21]

    Liu J, Cankurtaran B, Wieczorek L, Ford M J, Cortie M 2006 Adv. Funct. Mater. 16 1457

    [22]

    Hong X, Wang C C 2018 Acta Opt. Sin. 38 524001 (in Chinese) [洪昕, 王晨晨 2018 光学学报 38 524001]

    [23]

    Himmelhaus M, Takei H 2000 Sens. Actuator B:Chem. 63 24

    [24]

    Hong X, Du D D, Qiu Z R, Zhang G X 2007 Acta Phys. Sin. 56 7219 (in Chinese) [洪昕, 杜丹丹, 裘祖荣, 张国雄 2007 物理学报 56 7219]

    [25]

    Song J B, Yang X Y, Jacobson O, Huang P, Sun X L, Lin L S, Yan X F, Niu G, Ma Q J, Chen X Baffou G, Quidant R Chen X, Chen Y, Yan M, Qiu M 2012 ACS Nano 6 2550

    [26]

    Baffou G, Quidant R 2013 Laser Photon. Rev. 7 171

    [27]

    Chen X, Chen Y, Yan M, Qiu M 2012 ACS Nano 6 2550

  • [1]

    Cao J, Sun T, Grattan K T V 2014 Sens. Actuator B:Chem. 195 332

    [2]

    Petryayeva E, Krull U J 2011 Anal. Chim. Acta 706 8

    [3]

    Ortega-mendoza J G, Padilla-Vivanco A, Toxqui-Quitl C, Zaca-Morn P, Villegas-Hhernndez D, Chvez F 2014 Sensors 14 18701

    [4]

    Yang C C, Chu C K, Yu C K, Li M J, Chi T T, Kiang Y W, Tu Y C, Chang Y W 2014 Opt. Express 22 11754

    [5]

    Landsman M L, Kwant G, Mook G A, Zijlstra W G 1976 J. Appl. Physiol. 40 575

    [6]

    Wang C, Xu L G, Xu J T, Yang D, Liu B, Gai S L, He F, Yang P P 2017 Dalton Trans. 46 12147

    [7]

    Li J C, Hu Y, Yang J, Wei P, Sun W J, Shen M W, Zhang G X, Shi X Y 2015 Biomaterials 38 10

    [8]

    Truong N P, Whittaker M R, Mak C W, Davis T P 2015 Expert Opin. Drug Deliv. 12 129

    [9]

    Daraee H, Eatemadi A, Abbasi E, Aval S F, Kouhi M, Akbarzadeh A 2016 Artif. Cell. Nanomed. Biotechnol.44 1

    [10]

    Chen M, Tang S H, Guo Z D, Wang X Y, Mo S G, Huang X Q, Liu G, Zheng N F 2015 Adv. Mater. 26 8210

    [11]

    Jaque D, Mart -Nez M L, Del R B, Haro-Gonzalez P, Benayas A, Plaza J L 2014 Nanoscale 6 9494

    [12]

    Lee S M, Kim H J, Ha Y J, Park Y N, Lee S K, Park Y B, Yoo K H 2012 ACS Nano 7 50

    [13]

    Xing R T, Liu K, Jiao T F, Zhang N, Ma K, Zhang R Y, Zou Q L, Ma G H, Yan X H 2016 Adv. Mater. 28 3669

    [14]

    Smith A M, Mancini M C, Nie S 2009 Nat. Nanotechnol. 4 710

    [15]

    Oldenburg S J, Averitt R D, Westcott S L, Halas N J 1998 Chem. Phys. Lett. 288 243

    [16]

    Murphy C J, Sau T K, Gole A M, Orendorff C J, Gao J, Gou L, Hunyadi S E, Li T 2005 J. Phys. Chem. B 109 13857

    [17]

    Nehl C L, Liao H, Hafner J H 2006 Nano Lett. 6 683

    [18]

    Zhang X Y, Zhang T, Hu A, Song Y J, Duley W W 2012 Appl. Phys. Lett. 101 153118

    [19]

    Lee D, Yoon S 2015 J. Phys. Chem. C 119 7873

    [20]

    Gans R, ber D 1912 Ann. Phys. 342 881

    [21]

    Liu J, Cankurtaran B, Wieczorek L, Ford M J, Cortie M 2006 Adv. Funct. Mater. 16 1457

    [22]

    Hong X, Wang C C 2018 Acta Opt. Sin. 38 524001 (in Chinese) [洪昕, 王晨晨 2018 光学学报 38 524001]

    [23]

    Himmelhaus M, Takei H 2000 Sens. Actuator B:Chem. 63 24

    [24]

    Hong X, Du D D, Qiu Z R, Zhang G X 2007 Acta Phys. Sin. 56 7219 (in Chinese) [洪昕, 杜丹丹, 裘祖荣, 张国雄 2007 物理学报 56 7219]

    [25]

    Song J B, Yang X Y, Jacobson O, Huang P, Sun X L, Lin L S, Yan X F, Niu G, Ma Q J, Chen X Baffou G, Quidant R Chen X, Chen Y, Yan M, Qiu M 2012 ACS Nano 6 2550

    [26]

    Baffou G, Quidant R 2013 Laser Photon. Rev. 7 171

    [27]

    Chen X, Chen Y, Yan M, Qiu M 2012 ACS Nano 6 2550

  • [1] 赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开. 基于Au纳米岛修饰的CdSSe纳米带光电探测器. 物理学报, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [2] 王志全, 施卫. 太赫兹时域光谱中脉冲太赫兹波全息探测. 物理学报, 2022, 71(18): 188704. doi: 10.7498/aps.71.20220983
    [3] 洪昕, 王晓强, 李冬雪, 商云晶. 不依赖激发光偏振方向的芯帽异构二聚体. 物理学报, 2022, 71(3): 037801. doi: 10.7498/aps.71.20211381
    [4] 洪昕, 王晓强, 李冬雪, 商云晶. 不依赖激发光偏振方向的芯帽异构二聚体. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211381
    [5] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [6] 赵顾颢, 毛少杰, 赵尚弘, 蒙文, 祝捷, 张小强, 王国栋, 谷文苑. 双旋光双反射结构的温度-辐射自稳定性原理和实验研究. 物理学报, 2019, 68(16): 164202. doi: 10.7498/aps.68.20190429
    [7] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究. 物理学报, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [8] 王美洁, 贾维国, 张思远, 门克内木乐, 杨军, 张俊萍. 低双折射光纤中拉曼增益对光偏振态的影响. 物理学报, 2015, 64(3): 034212. doi: 10.7498/aps.64.034212
    [9] 刘绩林, 陈子阳, 张磊, 蒲继雄. 角向偏振无衍射光束的传输特性及其偏振态研究. 物理学报, 2015, 64(6): 064201. doi: 10.7498/aps.64.064201
    [10] 王美洁, 贾维国, 张思远, 乔海龙, 杨军, 张俊萍, 门克内木乐. 拉曼效应对低双折射光纤偏振特性的影响. 物理学报, 2014, 63(10): 104204. doi: 10.7498/aps.63.104204
    [11] 马骏, 袁操今, 冯少彤, 聂守平. 基于数字全息及复用技术的全场偏振态测试方法. 物理学报, 2013, 62(22): 224204. doi: 10.7498/aps.62.224204
    [12] 王强, 关宝璐, 刘克, 史国柱, 刘欣, 崔碧峰, 韩军, 李建军, 徐晨. 表面液晶-垂直腔面发射激光器温度特性的研究. 物理学报, 2013, 62(23): 234206. doi: 10.7498/aps.62.234206
    [13] 赵顾颢, 赵尚弘, 幺周石, 郝晨露, 蒙文, 王翔, 朱子行, 刘丰. 偏振无关的旋光双反射结构的实验研究. 物理学报, 2013, 62(13): 134201. doi: 10.7498/aps.62.134201
    [14] 张宣妮, 张淳民. 静态偏振风成像干涉仪光传输特性和光通量改善. 物理学报, 2012, 61(10): 104210. doi: 10.7498/aps.61.104210
    [15] 陈园园, 邹仁华, 宋钢, 张恺, 于丽, 赵玉芳, 肖井华. 纳米银线波导中表面等离极化波激发和辐射的偏振特性研究. 物理学报, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [16] 刘均海, 韩文娟, 张怀金, 王继扬, Xavier Mateos, Valentin Petrov. 不同组分的钒酸盐混晶Ybt:YxGd1-t-xVO4光谱与激光性质的比较研究. 物理学报, 2011, 60(1): 014211. doi: 10.7498/aps.60.014211
    [17] 刘虹遥, 吕强, 罗海陆, 文双春. 各向异性超常材料平板透镜的聚焦特性分析. 物理学报, 2010, 59(1): 256-263. doi: 10.7498/aps.59.256
    [18] 洪 昕, 杜丹丹, 裘祖荣, 张国雄. 半壳结构金纳米膜的局域表面等离子体共振效应. 物理学报, 2007, 56(12): 7219-7223. doi: 10.7498/aps.56.7219
    [19] 王 琛, 袁景和, 王桂英, 徐至展. 入射光的偏振特性对全内反射荧光显微术中荧光激发的影响. 物理学报, 2003, 52(12): 3014-3019. doi: 10.7498/aps.52.3014
    [20] 苏慧敏, 郑锡光, 王霞, 许剑锋, 汪河洲. 计算机模拟偏振对激光全息的影响. 物理学报, 2002, 51(5): 1044-1048. doi: 10.7498/aps.51.1044
计量
  • 文章访问数:  4918
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-07
  • 修回日期:  2018-07-14
  • 刊出日期:  2018-10-05

/

返回文章
返回