搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大质量样品厚度对中子活化定量分析的影响和修正

孙远明 许旭 唐婉月 常艺 陆景彬 赵龙 刘玉敏

引用本文:
Citation:

大质量样品厚度对中子活化定量分析的影响和修正

孙远明, 许旭, 唐婉月, 常艺, 陆景彬, 赵龙, 刘玉敏

Influence of mass sample thickness on quantitative analysis of neutron activation and its modification

Sun Yuan-Ming, Xu Xu, Tang Wan-Yue, Chang Yi, Lu Jing-Bin, Zhao Long, Liu Yu-Min
PDF
HTML
导出引用
  • 滑石粉的主要化学成分是Mg3[Si4010](OH)2, 通过检测面粉中24Mg和28Si原子核的含量, 可以计算出面粉中滑石粉的含量. 利用中子活化分析方法测量面粉中24Mg和28Si原子核的含量问题时, 被测样品内部中子通量和能量随厚度的变化以及γ射线自吸收效应会对测量结果有较大的影响. 利用MCNP5 (Monte Carlo N-particle transport code system 5)模拟了中子通量和能量与样品厚度变化的关系, 并利用氦3正比计数管测量样品不同厚度处中子通量, 结果显示MCNP5模拟结果与实验测量结果基本相符. 通过MCNP5模拟和碘化钠探测器测量, 研究了γ射线自吸收效应与样品厚度的关系, 确定了6.6 cm的样品厚度为最佳实验条件, 根据模拟结果给出了特征γ射线计数与样品厚度的关系式, 并与实验进行对比, 结果符合得较好.
    With traditional neutron activation analysis, the increase of sample quality leads to some problems in both irradiation process and measurement process. These problems include the neutron flux gradient in the range of the sample, the decrease of the thermal neutron flux rate around the sample and the influence of self-shielding in the sample in the irradiation process, In the process of measurement, the self-attenuation of γ-ray in the sample and the geometric effect of the sample lead to the effect of the detector on the measurement of characteristic γ-ray emissivity due to the difference in the detection efficiency of each point of the sample. So the neutron activation analysis of mass sample needs to make some additional modifications. By using the neutron activation analysis technique, the content of 24Mg and 28Si in a large amount of flour can be detected, and the content of talc powder in the flour can be given, so that the quality of flour can be monitored. The flour mainly contains C, H, O, N, Ca, and F element, but the main chemical constituent of talc powder is Mg3[Si4010](OH)2. Therefore, the measured content of Si and Mg element can be used to judge whether the flour contains talcum powder and to determine its exact content. When the content of 24Mg and 28Si in flour are measured by the neutron activation analysis, the variation of neutron flux and energy with thickness in the measured sample and the effect of γ-ray self-absorption will have great influence on the measurement results. The relationship between the neutron flux and energy and the thickness of the sample is simulated by MCNP5 (Monte Carlo N-particle transport code system 5), and the neutron fluxes at different thickness of the sample are measured by a 3He proportional counter tube. The results show that the simulation results of MCNP5 are basically consistent with the experimental results. Using the simulation by MCNP5 and the measurements by a sodium iodide detector, the relationship between γ-ray self-absorption effect and sample thickness is studied, and the sample thickness is determined to be 6.6.cm that is adopted as an optimal experimental condition. Based on the simulated data, the function relationship between the counting of 1.779 MeV γ-ray and the thickness of the sample is obtained as follows: A = 1401 + 3815x – 720x2 + 64x3 – 2.8x4 + 0.05x5. The curve trend of the experimental results is basically the same as that of the simulation results.
      通信作者: 陆景彬, ljb@jlu.edu.cn
    • 基金项目: 长春市科技局地院(校, 所)合作专项基金(批准号: 17DY023)和国家重大科学仪器设备开发专项(批准号: 2012YQ240121)资助的课题.
      Corresponding author: Lu Jing-Bin, ljb@jlu.edu.cn
    • Funds: Project supported by the Changchun Science and Technology Bureau Local Company and College (University, Institution) Cooperation Projects, China (Grant No. 17DY023) and the National Key Scientific Instrument and Equipment Development Projects, China (Grant No. 2012YQ240121).
    [1]

    德·索埃特著 (伍任 译) 1978 中子活化分析 (北京: 原子能出版社) 第1−2页

    de Soete D (translated by Wu R) 1978 Neutron Activation Analysis (Beijing: Atomic Energy Press) pp1−2 (in Chinese)

    [2]

    张兰芝, 倪邦发, 田伟之, 黄东辉, 张桂英, 刘存兄, 王平生, 刘立坤, 李德红 2005 原子能科学技术 3 282Google Scholar

    Zhang L Z, Ni B F, Tian W Z, Huang D H, Zhang G Y, Liu C X, Wang P S, Liu L K, Li D H 2005 Atom. Energy Sci. Technol. 3 282Google Scholar

    [3]

    贾文宝, 黑大千, 徐爱国, 陈晓文, 李安民 2011 原子能科学技术 45 1011

    Jia W B, Hei D Q, Xu A G, Chen X W, Li A M 2011 Atom. Energy Sc. Technol. 45 1011

    [4]

    Paul R L, Lindstrom R M 2000 J. Radioanalyt. Nucl. Chem. 243 181Google Scholar

    [5]

    田永顺, 胡志良, 童剑飞, 陈俊阳, 彭向阳, 梁天娇 2018 物理学报 67 142801Google Scholar

    Tian Y S, Hu Z L, Tong J F, Chen J Y, Peng X Y, Liang T J 2018 Acta Phys. Sin. 67 142801Google Scholar

    [6]

    李欣年, 郭俊鹏, 罗文芸, 王传珊, 方晓明, 虞太六 2008 原子能科学技术 42 343

    Li X N, Guo J P, Luo W Y, Wang C S, Fang X M, Yu T L 2008 Atom. Energy Sc. Technol. 42 343

    [7]

    何雄英, 郑世平, 卢小龙, 姚泽恩 2013 强激光与粒子束 25 253

    He X Y, Zheng S P, Lu X L, Yao Z E 2013 High Power Laser and Particle Beams 25 253

    [8]

    Lu Y S, Zhao H 2013 Nucl. Electron. Detect. Technol. 33 1527

    [9]

    Rick L P, Dagistan S, Jeremy C C, Christoph B, Richard M L 2015 J. Radioanalyt. Nucl. Chem. 304 189Google Scholar

    [10]

    王兴华, 孙洪超, 姚永刚, 肖才锦, 张贵英, 金象春, 华龙, 周四春 2014 同位素 27 251Google Scholar

    Wang X H, Sun H C, Yao Y G, Xiao C J, Zhang G Y, Jin X C, Hua L, Zhou S C 2014 J. Isotopes 27 251Google Scholar

    [11]

    张海青, 秦亚丽, 倪邦发, 田伟之, 王平生, 黄东辉, 张贵英, 刘存兄, 肖才锦, 孙洪超, 聂鹏, 陈喆 2010 原子能科学技术 10 1238

    Zhang H Q, Qin Y L, Ni B F, Tian W Z, Wang P S, Huang D H, Zhang G Y, Liu C X, Xiao C J, Sun H C, Nie P, Chen Z 2010 Atom. Energy Sci. Technol. 10 1238

    [12]

    严小松, 刘荣, 鹿心鑫, 蒋励, 王玫, 林菊芳 2012 物理学报 61 102801Google Scholar

    Yan X S, Liu R, Lu X X, Jiang L, Wang M, Lin J F 2012 Acta Phys. Sin. 61 102801Google Scholar

    [13]

    李德红, 苏桐龄 2005 大学物理 24 56Google Scholar

    Li D H, Su T L 2005 Univ. Phys. 24 56Google Scholar

    [14]

    曹传儒 1981分析化学 3 335

    Cao C R 1981 Analyt. Chem. 3 335

    [15]

    程璨, 贾文宝, 黑大千, 单卿, 凌永生, 张焱 2014 原子能科学技术 48 802

    Cheng C, Jia W B, Hei D Q, Shan Q, Ling Y S, Zhang Y 2014 Atom.Energy Sci. Technol. 48 802

    [16]

    贾文宝, 徐忠锋, 苏桐龄, 张晓民 1999 兰州大学学报 35 89Google Scholar

    Jia W B, Xu Z F, Su T L, Zhang X M 1999 J. Lanzhou Univ. 35 89Google Scholar

    [17]

    张海青, 肖才锦, 聂鹏, 秦亚丽, 陈喆, 倪邦发 2008 中国原子能科学研究院年报 2008 151

    Zhang H Q, Xiao C J, Nie P, Qin Y L, Chen Z, Ni B F 2008 Annual Report of China Institute of Atomic Energy 2008 151

    [18]

    孙洪超, 袁国军, 肖才锦, 张紫竹, 杨伟, 金象春, 张贵英, 王平生, 倪邦发 2012 中国原子能科学研究院年报 2012 118

    Sun H C, Yuan G J, Xiao C J, Zhang Z Z, Yang W, Jin X C, Zhang G Y, Wang P S, Ni B F 2012 Annual Report of China Institute of Atomic Energy 2012 118

    [19]

    陈念年, 蔡勇, 张建生, 张建华 2010 计算机工程与应用 46 208Google Scholar

    Chen N N, Cai Y, Zhang J S, Zhang J H 2010 Comput. Engin. Appl. 46 208Google Scholar

    [20]

    Evaluated Nuclear Data File (ENDF) https://www.nndc.bnl.gov/exfor/servlet/E4sMakeE4 [2019-2-1]

    [21]

    Evaluated Nuclear Data File (ENDF) https://www.nndc.bnl.gov/exfor/endf00.jsp [2018-5-11]

  • 图 1  MCNP模拟示意图

    Fig. 1.  Simulation diagram by MCNP.

    图 2  MCNP模拟不同厚度处中子通量

    Fig. 2.  Neutron flux at different thicknesses simulated by MCNP.

    图 3  MCNP模拟不同样品厚度处中子能谱

    Fig. 3.  Neutron spectrum simulated by MCNP.

    图 4  (n, p)反应截面[20]

    Fig. 4.  The reaction cross section of (n, p)[20].

    图 5  两条特征γ射线的出射率与样品的厚度的关系

    Fig. 5.  The relation between count rate of radiation and thickness of samples.

    图 6  中子通量与样品厚度的关系

    Fig. 6.  The relationship between neutron flux and sample thickness.

    图 7  (n, p)反应截面[21]

    Fig. 7.  The reaction cross section of (n, p)[21].

    图 8  碘化钠探测器测量不同样品γ能谱

    Fig. 8.  Measurement of gamma energy spectra of different samplesby sodium iodide detector.

    图 9  γ射线的计数与质量分数10%样品厚度的关系

    Fig. 9.  The relation between count rate of radiation and thickness of quality score 10% sample

  • [1]

    德·索埃特著 (伍任 译) 1978 中子活化分析 (北京: 原子能出版社) 第1−2页

    de Soete D (translated by Wu R) 1978 Neutron Activation Analysis (Beijing: Atomic Energy Press) pp1−2 (in Chinese)

    [2]

    张兰芝, 倪邦发, 田伟之, 黄东辉, 张桂英, 刘存兄, 王平生, 刘立坤, 李德红 2005 原子能科学技术 3 282Google Scholar

    Zhang L Z, Ni B F, Tian W Z, Huang D H, Zhang G Y, Liu C X, Wang P S, Liu L K, Li D H 2005 Atom. Energy Sci. Technol. 3 282Google Scholar

    [3]

    贾文宝, 黑大千, 徐爱国, 陈晓文, 李安民 2011 原子能科学技术 45 1011

    Jia W B, Hei D Q, Xu A G, Chen X W, Li A M 2011 Atom. Energy Sc. Technol. 45 1011

    [4]

    Paul R L, Lindstrom R M 2000 J. Radioanalyt. Nucl. Chem. 243 181Google Scholar

    [5]

    田永顺, 胡志良, 童剑飞, 陈俊阳, 彭向阳, 梁天娇 2018 物理学报 67 142801Google Scholar

    Tian Y S, Hu Z L, Tong J F, Chen J Y, Peng X Y, Liang T J 2018 Acta Phys. Sin. 67 142801Google Scholar

    [6]

    李欣年, 郭俊鹏, 罗文芸, 王传珊, 方晓明, 虞太六 2008 原子能科学技术 42 343

    Li X N, Guo J P, Luo W Y, Wang C S, Fang X M, Yu T L 2008 Atom. Energy Sc. Technol. 42 343

    [7]

    何雄英, 郑世平, 卢小龙, 姚泽恩 2013 强激光与粒子束 25 253

    He X Y, Zheng S P, Lu X L, Yao Z E 2013 High Power Laser and Particle Beams 25 253

    [8]

    Lu Y S, Zhao H 2013 Nucl. Electron. Detect. Technol. 33 1527

    [9]

    Rick L P, Dagistan S, Jeremy C C, Christoph B, Richard M L 2015 J. Radioanalyt. Nucl. Chem. 304 189Google Scholar

    [10]

    王兴华, 孙洪超, 姚永刚, 肖才锦, 张贵英, 金象春, 华龙, 周四春 2014 同位素 27 251Google Scholar

    Wang X H, Sun H C, Yao Y G, Xiao C J, Zhang G Y, Jin X C, Hua L, Zhou S C 2014 J. Isotopes 27 251Google Scholar

    [11]

    张海青, 秦亚丽, 倪邦发, 田伟之, 王平生, 黄东辉, 张贵英, 刘存兄, 肖才锦, 孙洪超, 聂鹏, 陈喆 2010 原子能科学技术 10 1238

    Zhang H Q, Qin Y L, Ni B F, Tian W Z, Wang P S, Huang D H, Zhang G Y, Liu C X, Xiao C J, Sun H C, Nie P, Chen Z 2010 Atom. Energy Sci. Technol. 10 1238

    [12]

    严小松, 刘荣, 鹿心鑫, 蒋励, 王玫, 林菊芳 2012 物理学报 61 102801Google Scholar

    Yan X S, Liu R, Lu X X, Jiang L, Wang M, Lin J F 2012 Acta Phys. Sin. 61 102801Google Scholar

    [13]

    李德红, 苏桐龄 2005 大学物理 24 56Google Scholar

    Li D H, Su T L 2005 Univ. Phys. 24 56Google Scholar

    [14]

    曹传儒 1981分析化学 3 335

    Cao C R 1981 Analyt. Chem. 3 335

    [15]

    程璨, 贾文宝, 黑大千, 单卿, 凌永生, 张焱 2014 原子能科学技术 48 802

    Cheng C, Jia W B, Hei D Q, Shan Q, Ling Y S, Zhang Y 2014 Atom.Energy Sci. Technol. 48 802

    [16]

    贾文宝, 徐忠锋, 苏桐龄, 张晓民 1999 兰州大学学报 35 89Google Scholar

    Jia W B, Xu Z F, Su T L, Zhang X M 1999 J. Lanzhou Univ. 35 89Google Scholar

    [17]

    张海青, 肖才锦, 聂鹏, 秦亚丽, 陈喆, 倪邦发 2008 中国原子能科学研究院年报 2008 151

    Zhang H Q, Xiao C J, Nie P, Qin Y L, Chen Z, Ni B F 2008 Annual Report of China Institute of Atomic Energy 2008 151

    [18]

    孙洪超, 袁国军, 肖才锦, 张紫竹, 杨伟, 金象春, 张贵英, 王平生, 倪邦发 2012 中国原子能科学研究院年报 2012 118

    Sun H C, Yuan G J, Xiao C J, Zhang Z Z, Yang W, Jin X C, Zhang G Y, Wang P S, Ni B F 2012 Annual Report of China Institute of Atomic Energy 2012 118

    [19]

    陈念年, 蔡勇, 张建生, 张建华 2010 计算机工程与应用 46 208Google Scholar

    Chen N N, Cai Y, Zhang J S, Zhang J H 2010 Comput. Engin. Appl. 46 208Google Scholar

    [20]

    Evaluated Nuclear Data File (ENDF) https://www.nndc.bnl.gov/exfor/servlet/E4sMakeE4 [2019-2-1]

    [21]

    Evaluated Nuclear Data File (ENDF) https://www.nndc.bnl.gov/exfor/endf00.jsp [2018-5-11]

计量
  • 文章访问数:  5853
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-21
  • 修回日期:  2019-02-15
  • 上网日期:  2019-04-01
  • 刊出日期:  2019-04-20

/

返回文章
返回