搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁基合金薄带多次等温回火特性的研究

许校嘉 方峥 陆轩昂 叶慧群 范晓珍 郑金菊 何兴伟 郭春羽 李文忠 方允樟

引用本文:
Citation:

铁基合金薄带多次等温回火特性的研究

许校嘉, 方峥, 陆轩昂, 叶慧群, 范晓珍, 郑金菊, 何兴伟, 郭春羽, 李文忠, 方允樟

The characteristics of multiple isothermal tempered Fe-based alloy ribbons

Xu Xiao-Jia, Fang Zheng, Lu Xuan-Ang, Ye Hui-Qun, Fan Xiao-Zhen, Zheng Jin-Ju, He Xing-Wei, Guo Chun-Yu, Li Wen-Zhong, Fang Yun-Zhang
PDF
HTML
导出引用
  • Fe基合金薄带的磁性能对应力敏感, 特别是退火过程应力感生磁各向异性是否可以用回火方法消除, 是一个令人感兴趣的科学问题. 本文采用同步辐射X射线衍射技术, 观测Fe73.5Cu1Nb3Si13.5B9非晶薄带经外加394.7 MPa应力540 ℃保温30 min退火后, 进行多次等温回火样品的微观结构, 用SupereyesB011型显微摄像机记录样品应力退火和回火过程的宏观伸长量, 并利用HP4294A型阻抗分析仪测量相应样品的磁各向异性. 对实验数据进行曲线拟合后发现, 虽然应力退火过程的残余应力引起的晶格各向异性是产生磁各向异性的主要原因, 但不是唯一原因, 在应力退火过程中非晶基底的蠕变引起的纳米晶晶粒定向团聚, 也是应力退火感生磁各向异性的重要原因; 而且, 因应力退火过程中非晶基底的蠕变引起纳米晶晶粒定向团聚感生的磁各向异性无法用等温回火方法完全消除.
    The magnetic properties of Fe-based alloy ribbons are sensitive to stress, and it’s an interesting scientific question whether stress-induced magnetic anisotropy during annealing procedure can be eliminated by tempering. In this paper, the synchrotron radiation technique was used to observe the microstructure of Fe73.5Cu1Nb3Si13.5B9 amorphous ribbons annealed at 540 ℃ for 30 minutes under 394.7MPa stress and tempered several times at the same temperature. The macroscopic elongation of the samples during stress annealing and tempering was recorded by SupereyesB011 microcamera, and the magnetic anisotropy of the samples was measured by HP4294A impedance analyzer. After fitting the experimental data, it is found that: (a) The lattice anisotropy, macroscopic strain and magnetic anisotropy of the sample show negative exponential attenuation with the tempering times, and their final residual are 19.04%. 98.27% and 31.65%. (b) Multiple tempering can not completely eliminate lattice anisotropy, macroscopic strain and magnetic anisotropy induced by stress annealing. (c) The magnetic anisotropy of the sample has a linear relationship with the lattice anisotropy, but the intercept between the reverse extension line of the relation curve and the longitudinal coordinate is not zero. When the lattice anisotropy is zero, there is still 16.36% magnetic anisotropy. This is different from Ohnuma's conclusion that lattice anisotropy is the direct cause of magnetic anisotropy. (d) The structure anisotropy caused by the residual stress after stress annealing is the main cause of magnetic anisotropy, but it is not the only reason. The directional congregation of agglomerated nanocrystalline grains caused by creep of amorphous substrates during stress annealing is also an important cause of magnetic anisotropy induced by stress annealing. Moreover, the magnetic anisotropy induced by the directional congregation of agglomerated nanocrystalline grains due to the creep of amorphous substrates during stress annealing can not be completely eliminated by tempering.
      通信作者: 方允樟, fyz@zjnu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB825705)、浙江省重点研发计划项目(批准号: 2018C01G2031345)、浙江省自然科学基金(批准号: LY14A040003)和国家自然科学基金(批准号: 51771083)资助的课题.
      Corresponding author: Fang Yun-Zhang, fyz@zjnu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB825705), the Key Research Program of Zhejiang Province, China (Grant No. 2018C01G2031345), the Natural Science Foundation of Zhejiang Pvovince, China (Grant No. LY14A040003) and the National Natural Science Foundation of China (Grant No. 51771083).
    [1]

    Yoshizawa Y, Oguma S, Yamauchi K 1988 J. Appl. Phys. 64 6044Google Scholar

    [2]

    Yoshizawa Y, Yamauchi K 1990 Mater. Trans. 31 307Google Scholar

    [3]

    Yoshizawa Y, Yamauchi K 1991 Mat. Sci. Eng. A: Struct. 133 176Google Scholar

    [4]

    Tejedor M, Hernando B, Sanchez M L, Prida V M, Garciabeneytez J M, Vazquez M, Herzer G 1998 J. Magn. Magn. Mater. 185 61Google Scholar

    [5]

    Herzer G 1992 J. Magn. Magn. Mater. 112 258Google Scholar

    [6]

    Yoshizawa Y, Yamauchi K 1989 IEEE Trans. Magn. 25 3324Google Scholar

    [7]

    Kraus L, Zavěta K, Heczko O, Duhaj P, Vlasak G, Schneider J 1992 J. Magn. Magn. Mater. 112 275Google Scholar

    [8]

    Fukunaga H, Furukawa N, Tanaka H, Nakano M 2000 J. Appl. Phys. 87 7103Google Scholar

    [9]

    Herzer G 1994 IEEE Trans. Magn. 30 4800Google Scholar

    [10]

    方允樟, 郑金菊, 施方也, 吴锋民, 孙怀君, 林根金, 杨晓红, 满其奎, 叶方敏 2008 中国科学: E辑 技术科学 38 428Google Scholar

    Fang Y Z, Zheng J J, Shi F Y, Wu F M, Sun H J, Lin G J, Yang X H, Man Q K, Ye F M 2008 Sci. Sin. E: Tech. 38 428Google Scholar

    [11]

    Ohnuma M, Hono K, Yanai T, Nakano M, Fukunaga H, Yoshizawa Y 2005 Appl. Phys. Lett. 86 152513Google Scholar

    [12]

    Hofmann B, Kronmüller H 1996 J. Magn. Magn. Mater. 152 91Google Scholar

    [13]

    Ohnuma M, Hono K, Yanai T, Fukunaga H, Yoshizawa Y 2003 Appl. Phys. Lett. 83 2859Google Scholar

    [14]

    Ohnuma M, Herzer G, Kozikowski P, Polak C, Budinsky V, Koppoju S 2012 Acta Mater. 60 1278Google Scholar

    [15]

    杨全民, 王玲玲, 孙德成 2005 物理学报 54 5730Google Scholar

    Yang Q M, Wang L L, Sun D C 2005 Acta Phys. Sin. 54 5730Google Scholar

    [16]

    杨全民, 王玲玲 2005 物理学报 54 4256Google Scholar

    Yang Q M, Wang L L 2005 Acta Phys. Sin. 54 4256Google Scholar

    [17]

    Nutor R K, Xu X J, Fan X Z, Ren S S, He X W, Fang Y Z 2018 J. Magn. Magn. Mater. 454 51Google Scholar

    [18]

    Nutor R K, Fan X Z, He X W, Xu X J, Lu X A, Jiang J Z, Fang Y Z 2019 J. Alloy. Compd. 774 1243Google Scholar

    [19]

    施方也, 方允樟, 孙怀君, 郑金菊, 林根金, 吴锋民 2007 物理学报 56 4009Google Scholar

    Shi F Y, Fang Y Z, Sun H J, Zheng J J, Lin G J, Wu F M 2007 Acta Phys. Sin. 56 4009Google Scholar

    [20]

    Fang Y Z, Zheng J J, Wu F M, Xu Q M, Zhang J Q, Ye H Q, Zheng J L, Li T Y 2010 Appl. Phys. Lett. 96 92508Google Scholar

  • 图 1  经应力退火和回火的Fe基薄带的XRD谱

    Fig. 1.  XRD peaks map of stress annealing and tempering ribbons

    图 2  Fe基合金薄带残余晶格各向异性与回火次数的关系曲线

    Fig. 2.  Relationship between the residual structure anisotropy and tempering times

    图 3  Fe基合金薄带残余宏观应变与回火次数的关系曲线

    Fig. 3.  Relationship between the residual macroscopic strain and tempering times of the ribbon

    图 4  薄带应力退火和多次回火的GMI曲线

    Fig. 4.  GMI curves of stress annealing and multiple tempering ribbons.

    图 5  Fe基合金薄带残余磁各向异性与回火次数的关系曲线

    Fig. 5.  Relationship between the residual magnetic anisotropy and tempering times of the ribbon.

    图 6  Fe基合金薄带残余磁各向异性与残余晶格各向异性的关系

    Fig. 6.  Relationship between the residual magnetic anisotropy and the residual structure anisotropy of the ribbon

    表 1  (7), (9)和(11)式的参数比较

    Table 1.  Comparison of parameters between equation (7), (9) and (11).

    常数项指数项拟合优度
    残余晶格各向异性$\alpha $/%19.04$80.93 \times {{\rm{e}}^{ - n/0.51}}$0.99829
    残余宏观应变$\delta $/%98.27$1.73 \times {{\rm{e}}^{ - n/0.48}}$0.99913
    残余磁各向异性$\gamma $/%31.65$68.30 \times {{\rm{e}}^{ - n/0.56}}$0.99604
    下载: 导出CSV
  • [1]

    Yoshizawa Y, Oguma S, Yamauchi K 1988 J. Appl. Phys. 64 6044Google Scholar

    [2]

    Yoshizawa Y, Yamauchi K 1990 Mater. Trans. 31 307Google Scholar

    [3]

    Yoshizawa Y, Yamauchi K 1991 Mat. Sci. Eng. A: Struct. 133 176Google Scholar

    [4]

    Tejedor M, Hernando B, Sanchez M L, Prida V M, Garciabeneytez J M, Vazquez M, Herzer G 1998 J. Magn. Magn. Mater. 185 61Google Scholar

    [5]

    Herzer G 1992 J. Magn. Magn. Mater. 112 258Google Scholar

    [6]

    Yoshizawa Y, Yamauchi K 1989 IEEE Trans. Magn. 25 3324Google Scholar

    [7]

    Kraus L, Zavěta K, Heczko O, Duhaj P, Vlasak G, Schneider J 1992 J. Magn. Magn. Mater. 112 275Google Scholar

    [8]

    Fukunaga H, Furukawa N, Tanaka H, Nakano M 2000 J. Appl. Phys. 87 7103Google Scholar

    [9]

    Herzer G 1994 IEEE Trans. Magn. 30 4800Google Scholar

    [10]

    方允樟, 郑金菊, 施方也, 吴锋民, 孙怀君, 林根金, 杨晓红, 满其奎, 叶方敏 2008 中国科学: E辑 技术科学 38 428Google Scholar

    Fang Y Z, Zheng J J, Shi F Y, Wu F M, Sun H J, Lin G J, Yang X H, Man Q K, Ye F M 2008 Sci. Sin. E: Tech. 38 428Google Scholar

    [11]

    Ohnuma M, Hono K, Yanai T, Nakano M, Fukunaga H, Yoshizawa Y 2005 Appl. Phys. Lett. 86 152513Google Scholar

    [12]

    Hofmann B, Kronmüller H 1996 J. Magn. Magn. Mater. 152 91Google Scholar

    [13]

    Ohnuma M, Hono K, Yanai T, Fukunaga H, Yoshizawa Y 2003 Appl. Phys. Lett. 83 2859Google Scholar

    [14]

    Ohnuma M, Herzer G, Kozikowski P, Polak C, Budinsky V, Koppoju S 2012 Acta Mater. 60 1278Google Scholar

    [15]

    杨全民, 王玲玲, 孙德成 2005 物理学报 54 5730Google Scholar

    Yang Q M, Wang L L, Sun D C 2005 Acta Phys. Sin. 54 5730Google Scholar

    [16]

    杨全民, 王玲玲 2005 物理学报 54 4256Google Scholar

    Yang Q M, Wang L L 2005 Acta Phys. Sin. 54 4256Google Scholar

    [17]

    Nutor R K, Xu X J, Fan X Z, Ren S S, He X W, Fang Y Z 2018 J. Magn. Magn. Mater. 454 51Google Scholar

    [18]

    Nutor R K, Fan X Z, He X W, Xu X J, Lu X A, Jiang J Z, Fang Y Z 2019 J. Alloy. Compd. 774 1243Google Scholar

    [19]

    施方也, 方允樟, 孙怀君, 郑金菊, 林根金, 吴锋民 2007 物理学报 56 4009Google Scholar

    Shi F Y, Fang Y Z, Sun H J, Zheng J J, Lin G J, Wu F M 2007 Acta Phys. Sin. 56 4009Google Scholar

    [20]

    Fang Y Z, Zheng J J, Wu F M, Xu Q M, Zhang J Q, Ye H Q, Zheng J L, Li T Y 2010 Appl. Phys. Lett. 96 92508Google Scholar

计量
  • 文章访问数:  5382
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-04
  • 修回日期:  2019-05-15
  • 上网日期:  2019-06-06
  • 刊出日期:  2019-07-05

/

返回文章
返回