搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

载流子复合及能量无序对聚合物太阳电池开路电压的影响

周庆中 郭丰 张明睿 尤庆亮 肖标 刘继延 刘翠 刘学清 王亮

引用本文:
Citation:

载流子复合及能量无序对聚合物太阳电池开路电压的影响

周庆中, 郭丰, 张明睿, 尤庆亮, 肖标, 刘继延, 刘翠, 刘学清, 王亮

Impact of charge carrier recombination and energy disorder on the open-circuit voltage of polymer solar cells

Zhou Qing-Zhong, Guo Feng, Zhang Ming-Rui, You Qing-Liang, Xiao Biao, Liu Ji-Yan, Liu Cui, Liu Xue-Qing, Wang Liang
PDF
HTML
导出引用
  • 聚合物太阳电池中载流子的复合与能量无序对器件的开路电压有着深刻的影响. 本文同时研究了基于传统富勒烯(PC71BM)和非富勒烯(O-IDTBR)电子受体的聚合物太阳电池. 通过交流阻抗谱、低温电流密度-电压谱、瞬态光电压以及电致发光光谱等手段重点研究了载流子复合及能量无序对电池器件开路电压的影响. 具体地, 交流阻抗谱和瞬态光电压测试结果表明, 富勒烯体系载流子复合损失较为严重. 电致发光光谱研究显示, PC71BM器件的发光峰随着注入电流的增加不断向短波长处移动, 而O-IDTBR体系发光峰位置基本不变, 该结果证明PC71BM体系中能量无序度更高. 载流子复合严重及能量无序度更高共同作用导致了富勒烯器件开路电压的降低.
    Charge carrier recombination and energy disorder in organic solar cells both have a profound impact on the open-circuit voltage of the device. In this paper, both traditional fullerene-(PC71BM) and nonfullerene-(O-IDTBR) based solar cells were fabricated using the same electron donor material (PTB7-Th). The room-temperature current density–voltage characteristics showed that despite the values of their power conversion efficiencies were very close, there was a huge open circuit voltage (Voc) difference between the PC71BM and O-IDTBR devices. To understand the sources of the Voc variation, characterization techniques such as impedance spectra, low temperature electrical characterization method, transient photovoltage, and electroluminescent spectra were carried out. Temperature-dependent Voc of the devices were measured in a large temperature range between 120 K and 300 K. The charge transfer state energy (ECT) of the fullerene and the nonfullerene cells were determined to be 1.13 V and 1.34 V, respectively. Furthermore, the Mott-Schottky equation was applied to analyze the capacitance- voltage curves of the fabricated devices. Results showed that the built-in voltage (Vbi) of the O-IDTBR based cell (1.38 V) was much higher than that of the PC71BM cell (1.15 V). By analyzing the above data, it was easy to speculate that charge carrier recombination loss in the PC71BM device was more serious since the net electric field was relatively weak. Impedance spectra were used to measure the charge carrier recombination process in both devices. Fitting results through the equivalent circuit stated clearly that values of the recombination resistance in the O-IDTBR device were much higher in the test range, indicating that the charge carrier was less easy to recombine in the nonfullerene device. This speculation could be verified by the transient photovoltage (TPV) measurements since the carrier lifetime in the O-IDTBR device was much longer. The excited states in the devices were investigated by the electroluminescence spectra. Since the full width at half maximum (FWHM) of the O-IDTBR emission spectrum was narrower, the excited state energy distribution in the O-IDTBR device was more uniform. Based on the above analyses, the higher Voc in the O-IDTBR device was attributed to the mild charge carrier recombination and low energy disorder.
      Corresponding author: Xiao Biao, biaoxiao@jhun.edu.cn ; Liu Cui, liucui@jhun.edu.cn ; Liu Xue-Qing, liuxueqing2000@163.com ; Wang Liang, wangliang@jhun.edu.cn
    [1]

    Lee C, Lee S, Kim G U, Lee W, Kim B J 2019 Chem. Rev. 119 8028Google Scholar

    [2]

    Zhang S, Qin Y, Zhu J, Hou J 2018 Adv. Mater. 30 1800868Google Scholar

    [3]

    Yuan J, Zhou L Y, Zhang G C, Yip H L, Lau T K, Lu X H, Zhu C, Peng H J, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y F, Zou Y P 2019 Joule 3 1140Google Scholar

    [4]

    Li S S, Ye L, Zhao W C, Yan H P, Yang B, Liu D, Li W N, Ade H, Hou J H 2018 J. Am. Chem. Soc. 140 7159Google Scholar

    [5]

    Sun C K, Pan F, Bin H J, Zhang J Q, Xue L W, Qiu B B, Wei Z X, Zhang Z G, Li Y F 2018 Nat. Commun. 9 743Google Scholar

    [6]

    Ma W, Tumbleston J R, Wang M, Gann E, Huang F, Ade H 2013 Adv. Energy Mater. 3 864Google Scholar

    [7]

    Zhao W C, Qian D P, Zhang S Q, Li S S, Inganäs O, Gao F, Hou J H 2016 Adv. Mater. 28 4734Google Scholar

    [8]

    Yang X N, Loos J, Veenstra S C, Verhees W J H, Wienk M M, Kroon J M, Michels M A J, Janssen R A J 2005 Nano. Lett. 5 4

    [9]

    Cowan S R, Roy A, Heeger A J 2010 Phys. Rev. B 82 245207Google Scholar

    [10]

    Proctor C M, Kim C, Neher D, Nguyen T Q 2013 Adv. Funct. Mater. 23 3584Google Scholar

    [11]

    Sharma A, Chauhan M, Bharti V, Kumar M, Chand S, Tripathi B, Tiwari J P 2017 Phys. Chem. Chem. Phys. 19 26169Google Scholar

    [12]

    Noriega R, Rivnay J, Vandewal K, Koch F P V, Stingelin N, Smith P, Toney M F, Salleo A 2013 Nat. Mater. 12 1038Google Scholar

    [13]

    Jurchescu O D, Popinciuc M, van Wees B J, Palstra T T M 2007 Adv. Mater. 19 688Google Scholar

    [14]

    Credgington D, Hamilton R, Atienzar P, Nelson J, Durrant J R 2011 Adv. Funct. Mater. 21 2744Google Scholar

    [15]

    Blakesley J, Neher D 2011 Phys. Rev. B 84 075210Google Scholar

    [16]

    Gao F, Himmelberger S, Andersson M, Hanifi D, Xia Y X, Zhang S Q, Wang J P, Hou J H, Salleo A, Inganäs O 2015 Adv. Mater. 27 3868Google Scholar

    [17]

    Heumueller T, Burke T M, Mateker W R, Sachs-Quintana I T, Vandewal K, Brabec C J, McGehee M D 2015 Adv. Energy Mater. 5 1500111Google Scholar

    [18]

    Xie S K, Xia Y X, Zheng Z, Zhang X N, Yuan J Y, Zhou H Q, Zhang Y 2018 Adv. Funct. Mater. 28 1705659Google Scholar

    [19]

    He Z C, Xiao B, Liu F, Wu H B, Yang Y L, Xiao S, Wang C, Russel T P, Cao Y 2015 Nat. Photonics 9 174Google Scholar

    [20]

    Baran D, Ashraf R S, Hanifi D A, Abdelsamie M, Gasparini N, Röhr J A, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott C J M, Nelson J, Brabec C J, Amassian A, Salleo A, Kirchartz T, Durrant J R, McCulloch I 2017 Nat. Mater. 16 363Google Scholar

    [21]

    Dennler G, Scharber M C, Brabec C J 2009 Adv. Mater. 21 1323Google Scholar

    [22]

    Gruber M, Wagner J, Klein K, Hörmann U, Opitz A, Stutzmann M, Brütting W 2012 Adv. Energy Mater. 2 1100Google Scholar

    [23]

    Fabregat-Santiago F, Garcia-Belmonte G, Mora-Seró I, Bisquert J 2011 Phys. Chem. Chem. Phys. 13 9083Google Scholar

    [24]

    Casalini R, Tsang S W, Deininger J J, Arroyave F A, Reynolds J R, So F 2013 J. Phys. Chem. C 117 13798Google Scholar

    [25]

    Zhou H Q, Zhang Y, Seifter J, Collins S D, Luo D, Bazan G C, Nguyen T Q, Heeger A J 2013 Adv. Mater. 25 1646Google Scholar

  • 图 1  (a)电子受体材料PC71BM与O-IDTBR的化学结构式及光活性层材料的能级示意图; (b)基于PC71BM和O-IDTBR的电流密度-电压曲线

    Fig. 1.  (a) Chemical structures of PC71BM、O-IDTBR and their energy level diagrams; (b) Current density-Voltage curves of the PC71BM and O-IDTBR based devices.

    图 2  (a) 两种器件的开路电压随温度变化的曲线; (b)两种器件的Mott-Schottky曲线

    Fig. 2.  (a) Voc-Temperature curves of the devices using different electron acceptors; (b) Mott- Schottky curves for the devices.

    图 3  (a) 器件的复合电阻随光照强度的变化曲线, 插图: 阻抗谱的等效拟合电路; (b)器件的瞬态光电压曲线

    Fig. 3.  (a) Recombination resistance as a function of the light intensities, inset: Equivalent circuit of the measured impedance spectrum; (b) transient photovoltage curves of the devices.

    图 4  (a) PC71BM与 (b) O-IDTBR器件在不同注入电流下的电致发光光谱

    Fig. 4.  Electroluminescence of the (a) PC71BM and (b) O-IDTBR based devices with various injection current.

    图 5  (a) PC71BM器件与O-IDTBR器件的电致荧光发射过程示意图; (b)能量无序对开路电压的影响示意图

    Fig. 5.  (a) Illustration of the fluorescence emission process in the polymer solar cells; (b) illustration of the impact of energy disorder on the open-circuit voltage.

  • [1]

    Lee C, Lee S, Kim G U, Lee W, Kim B J 2019 Chem. Rev. 119 8028Google Scholar

    [2]

    Zhang S, Qin Y, Zhu J, Hou J 2018 Adv. Mater. 30 1800868Google Scholar

    [3]

    Yuan J, Zhou L Y, Zhang G C, Yip H L, Lau T K, Lu X H, Zhu C, Peng H J, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y F, Zou Y P 2019 Joule 3 1140Google Scholar

    [4]

    Li S S, Ye L, Zhao W C, Yan H P, Yang B, Liu D, Li W N, Ade H, Hou J H 2018 J. Am. Chem. Soc. 140 7159Google Scholar

    [5]

    Sun C K, Pan F, Bin H J, Zhang J Q, Xue L W, Qiu B B, Wei Z X, Zhang Z G, Li Y F 2018 Nat. Commun. 9 743Google Scholar

    [6]

    Ma W, Tumbleston J R, Wang M, Gann E, Huang F, Ade H 2013 Adv. Energy Mater. 3 864Google Scholar

    [7]

    Zhao W C, Qian D P, Zhang S Q, Li S S, Inganäs O, Gao F, Hou J H 2016 Adv. Mater. 28 4734Google Scholar

    [8]

    Yang X N, Loos J, Veenstra S C, Verhees W J H, Wienk M M, Kroon J M, Michels M A J, Janssen R A J 2005 Nano. Lett. 5 4

    [9]

    Cowan S R, Roy A, Heeger A J 2010 Phys. Rev. B 82 245207Google Scholar

    [10]

    Proctor C M, Kim C, Neher D, Nguyen T Q 2013 Adv. Funct. Mater. 23 3584Google Scholar

    [11]

    Sharma A, Chauhan M, Bharti V, Kumar M, Chand S, Tripathi B, Tiwari J P 2017 Phys. Chem. Chem. Phys. 19 26169Google Scholar

    [12]

    Noriega R, Rivnay J, Vandewal K, Koch F P V, Stingelin N, Smith P, Toney M F, Salleo A 2013 Nat. Mater. 12 1038Google Scholar

    [13]

    Jurchescu O D, Popinciuc M, van Wees B J, Palstra T T M 2007 Adv. Mater. 19 688Google Scholar

    [14]

    Credgington D, Hamilton R, Atienzar P, Nelson J, Durrant J R 2011 Adv. Funct. Mater. 21 2744Google Scholar

    [15]

    Blakesley J, Neher D 2011 Phys. Rev. B 84 075210Google Scholar

    [16]

    Gao F, Himmelberger S, Andersson M, Hanifi D, Xia Y X, Zhang S Q, Wang J P, Hou J H, Salleo A, Inganäs O 2015 Adv. Mater. 27 3868Google Scholar

    [17]

    Heumueller T, Burke T M, Mateker W R, Sachs-Quintana I T, Vandewal K, Brabec C J, McGehee M D 2015 Adv. Energy Mater. 5 1500111Google Scholar

    [18]

    Xie S K, Xia Y X, Zheng Z, Zhang X N, Yuan J Y, Zhou H Q, Zhang Y 2018 Adv. Funct. Mater. 28 1705659Google Scholar

    [19]

    He Z C, Xiao B, Liu F, Wu H B, Yang Y L, Xiao S, Wang C, Russel T P, Cao Y 2015 Nat. Photonics 9 174Google Scholar

    [20]

    Baran D, Ashraf R S, Hanifi D A, Abdelsamie M, Gasparini N, Röhr J A, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott C J M, Nelson J, Brabec C J, Amassian A, Salleo A, Kirchartz T, Durrant J R, McCulloch I 2017 Nat. Mater. 16 363Google Scholar

    [21]

    Dennler G, Scharber M C, Brabec C J 2009 Adv. Mater. 21 1323Google Scholar

    [22]

    Gruber M, Wagner J, Klein K, Hörmann U, Opitz A, Stutzmann M, Brütting W 2012 Adv. Energy Mater. 2 1100Google Scholar

    [23]

    Fabregat-Santiago F, Garcia-Belmonte G, Mora-Seró I, Bisquert J 2011 Phys. Chem. Chem. Phys. 13 9083Google Scholar

    [24]

    Casalini R, Tsang S W, Deininger J J, Arroyave F A, Reynolds J R, So F 2013 J. Phys. Chem. C 117 13798Google Scholar

    [25]

    Zhou H Q, Zhang Y, Seifter J, Collins S D, Luo D, Bazan G C, Nguyen T Q, Heeger A J 2013 Adv. Mater. 25 1646Google Scholar

  • [1] 田小让, 贾锐. 通过导纳谱表征铜铟镓硒电池中的缺陷. 物理学报, 2023, 72(17): 178801. doi: 10.7498/aps.72.20230292
    [2] 黄昊, 牛奔, 陶婷婷, 罗世平, 王颖, 赵晓辉, 王凯, 李志强, 党伟. Sb2Se3薄膜表面和界面超快载流子动力学的瞬态反射光谱分析. 物理学报, 2022, 71(6): 066402. doi: 10.7498/aps.71.20211714
    [3] 李俊炜, 王祖军, 石成英, 薛院院, 宁浩, 徐瑞, 焦仟丽, 贾同轩. GaInP/GaAs/Ge三结太阳电池不同能量质子辐照损伤模拟. 物理学报, 2020, 69(9): 098802. doi: 10.7498/aps.69.20191878
    [4] 魏应强, 徐磊, 彭其明, 王建浦. 钙钛矿的Rashba效应及其对载流子复合的影响. 物理学报, 2019, 68(15): 158506. doi: 10.7498/aps.68.20190675
    [5] 李琦, 章勇. 基于Al2O3/MoO3复合阳极缓冲层的倒置聚合物太阳能电池的研究. 物理学报, 2018, 67(6): 067201. doi: 10.7498/aps.67.20172311
    [6] 檀满林, 周丹丹, 符冬菊, 张维丽, 马清, 李冬霜, 陈建军, 张化宇, 王根平. 基于BiFeO3/ITO复合膜表面钝化的黑硅太阳电池性能研究. 物理学报, 2017, 66(16): 167701. doi: 10.7498/aps.66.167701
    [7] 肖友鹏, 高超, 王涛, 周浪. 载流子选择性接触:高效硅太阳电池的选择. 物理学报, 2017, 66(15): 158801. doi: 10.7498/aps.66.158801
    [8] 李琦, 章勇. 基于聚多巴胺/氧化锌复合阴极缓冲层的倒置聚合物太阳能电池的研究. 物理学报, 2017, 66(19): 198201. doi: 10.7498/aps.66.198201
    [9] 齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬. 电子辐照下GaAs/Ge太阳电池载流子输运机理研究. 物理学报, 2015, 64(10): 108802. doi: 10.7498/aps.64.108802
    [10] 李畅, 薛唯, 韩长峰, 钱磊, 赵谡玲, 喻志农, 章婷, 王岭雪. ZnO电子传输层对于反型结构聚合物太阳电池光浴效应的影响. 物理学报, 2015, 64(8): 088401. doi: 10.7498/aps.64.088401
    [11] 刘长文, 周讯, 岳文瑾, 王命泰, 邱泽亮, 孟维利, 陈俊伟, 齐娟娟, 董超. 金属氧化物基杂化型聚合物太阳电池研究. 物理学报, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [12] 刘志方, 赵谡玲, 徐征, 杨倩倩, 赵玲, 刘志民, 陈海涛, 杨一帆, 高松, 徐叙瑢. 利用Ag2O/PEDOT:PSS复合缓冲层提高P3HT:PCBM聚合物太阳能电池器件性能的研究. 物理学报, 2014, 63(6): 068402. doi: 10.7498/aps.63.068402
    [13] 许中华, 陈卫兵, 叶玮琼, 杨伟丰. 聚合物和小分子叠层结构有机太阳电池研究. 物理学报, 2014, 63(21): 218801. doi: 10.7498/aps.63.218801
    [14] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 郝娟. 聚对苯乙炔MOPPV/ZnSe量子点复合材料太阳电池性能研究. 物理学报, 2013, 62(7): 078802. doi: 10.7498/aps.62.078802
    [15] 於黄忠, 温源鑫. 不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响. 物理学报, 2011, 60(3): 038401. doi: 10.7498/aps.60.038401
    [16] 闫悦, 赵谡玲, 徐征, 龚伟, 王大伟. 多环类苝四甲酸二酐插入层对ZnO纳米棒和聚合物复合太阳电池性能的影响. 物理学报, 2011, 60(8): 088803. doi: 10.7498/aps.60.088803
    [17] 曾广根, 黎兵, 郑家贵, 武莉莉, 张静全, 雷智, 李卫, 冯良桓. CdTe太阳电池前电极SnO2:F/SnO2复合薄膜性能分析. 物理学报, 2010, 59(10): 7437-7441. doi: 10.7498/aps.59.7437
    [18] 徐苗, 彭俊彪. 制膜工艺对聚合物太阳电池性能影响的研究. 物理学报, 2010, 59(3): 2131-2136. doi: 10.7498/aps.59.2131
    [19] 乔士柱, 赵俊卿, 贾振锋, 张宁玉, 王凤翔, 付刚, 季燕菊. 自旋极化有机电致发光器件中单线态与三线态激子的形成及调控. 物理学报, 2010, 59(5): 3564-3570. doi: 10.7498/aps.59.3564
    [20] 李宏建, 彭景翠, 许雪梅, 瞿述, 夏辉, 罗小华. 有机电致发光器件中载流子的输运和复合发光. 物理学报, 2002, 51(2): 430-433. doi: 10.7498/aps.51.430
计量
  • 文章访问数:  8438
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-06
  • 修回日期:  2019-12-16
  • 刊出日期:  2020-02-20

/

返回文章
返回