搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁过滤阴极真空弧技术制备厚且韧TiN涂层

张志强 廖斌 欧伊翔 张丰收 张旭 沈永青 陈淑年 华青松 何光宇 欧阳晓平

引用本文:
Citation:

磁过滤阴极真空弧技术制备厚且韧TiN涂层

张志强, 廖斌, 欧伊翔, 张丰收, 张旭, 沈永青, 陈淑年, 华青松, 何光宇, 欧阳晓平

Thick yet tough TiN coatings deposited by filter cathode vacuum arc technology

Zhang Zhi-Qiang, Liao Bin, Ou Yi-Xiang, Zhang Feng-Shou, Zhang Xu, Shen Yong-Qing, Chen Shu-Nian, Hua Qing-Song, He Guang-Yu, Ouyang Xiao-Ping
PDF
HTML
导出引用
  • 极端服役条件的出现对涡轮喷气发动机压气机叶片防护涂层提出了越来越高的性能要求, 具备厚且韧, 同时满足结合力高且耐磨性好的硬质涂层是未来极端服役环境下的潜在涂层. 本文利用磁过滤阴极真空弧技术在304L不锈钢基底上成功地沉积了厚且韧的TiN硬质涂层, 并利用扫描电子显微镜、X射线衍射仪等对涂层的形貌、结构和性能进行了研究. 实验结果表明: 沉积过程中, 对TiN涂层进行周期性地高能离子轰击处理, 能够实现TiN大晶粒抑制, 降低涂层内应力, 使TiN涂层实现连续生长, 涂层的厚度可达到50 μm, 沉积速率接近0.2 μm/min; 同时控制N2气流量不变生成稳定的非化学计量TiNx, 使TiN涂层具有一定的韧性. 制备的TiN涂层属于超硬涂层, 硬度和弹性模量最高分别可达到38.24和386.53 GPa; TiN涂层的结合力良好, 压痕无剥落形貌和径向裂纹, 涂层的韧性优良; TiN涂层的$ H/E^* $$ H^3/E^{*2} $值最高可达到0.0989和0.3742; 厚且韧的TiN硬质涂层表现出优良的耐磨性, 摩擦系数最低为0.26.
    There are some high requirements for mechanical property to protective coatings of turbojet engine compressor blades as the appearance of extreme service conditions. The hard coating with high toughness, good adhesion, good wear resistance and excellent load carrying capacity is a potential coating for extreme service conditions in the future. Thick yet tough TiN hard coatings were successfully deposited on 304L stainless steel substrates by magnetic filtered cathodic vacuum arc technology. The morphology, structure and properties of the coatings were studied by SEM and XRD, etc.The results show that the continuous growth of TiN coatings attributed to periodic high energy ion bombardment which can suppress the large grain size and reduce the internal stress. The thickness of TiN coating can reach to 50 μm and the deposition rate was close to 0.2 μm/min. At the same time, the stable non stoichiometric TiN0.9 can be formed by controlling the constant N2 flow rate, which can improve the toughness of TiN coatings. All TiN ciatings belong to superhard coating and the max value of hardness and modulus of elasticity were 38.24 GPa and 386.53 GPa respectively. TiN coatings have good adhesion and excellent toughness.The highest $ H/E^{*} $ and $ H^3/E^{*2} $ rate of TiN coating can reach to 0.0989 and 0.3742. Thick yet tough TiN hard coatings have excellent wear resistance with the lowest friction coefficient of 0.26.
      通信作者: 廖斌, liaobingz@126.com
    • 基金项目: 广东省重点领域研发计划(批准号: 2019 B090909002)、国家科技重大专项(批准号: 2017-VII-0012-0107)和国防科技重点实验室基金(批准号: 614220207011802)资助的课题
      Corresponding author: Liao Bin, liaobingz@126.com
    • Funds: Project supported by the Key Area R&D Program ofGuangdong Province, China(Grant No. 2019 B090909002), the National Science and Technology Major Projectof the Ministry of Science and Technology of China (Grant No. 2017-VII-0012-0107), and the National Defense Science and Technology Key Laboratory Fundof China (Grant No. 614220207011802)
    [1]

    Chavda M R, Dave D P, Chauhan K V, Rawal S K 2016 Proc. Technol. 23 36Google Scholar

    [2]

    Sun Z P, He G Y, Meng Q J, Li Y Q, Tian X D 2019 Chin. J. Aeronaut

    [3]

    Liang W, Yang J J, Zhang F F, Lu C Y, Wang L M, Liao J L, Yang Y Y, Liu N 2018 J. Nucl. Mater. 501 388Google Scholar

    [4]

    Swadźba L, Formanek B, Gabriel H M, Liberski P, Podolski P 1993 Surf. Coat. Technol. 62 486Google Scholar

    [5]

    Zhou D P, Peng H, Zhu L, Guo H B, Gong S K 2014 Surf. Coat. Technol. 258 102Google Scholar

    [6]

    Hetmańczyk M, Swadźba L, Mendala B 2007 J. Achiev. Mater. Manuf. Eng. 24 372

    [7]

    Li J Z, Zheng H, Sinkovits T, Hee A C, Zhao Y 2015 Appl. Surf. Sci. 355 502Google Scholar

    [8]

    Djabella H, Arnell R 1993 Thin Solid Films 235 156Google Scholar

    [9]

    Hintermann H 1984 Wear 100 381Google Scholar

    [10]

    Wang L, Zhong X H, Zhao YX, Tao S Y, Zhang W, Wang Y, Sun X G 2014 J.Asian Ceram. Soc. 2 102Google Scholar

    [11]

    Wang J, Pu J, Zhang G G, Wang L P 2013 ACS Appl. Mater. Interfaces 5 5015Google Scholar

    [12]

    Wei R, Langa E, Rincon C, Arps J H 2006 Surf. Coat. Technol. 201 4453Google Scholar

    [13]

    Li Z C, Wang Y X, Cheng X Y, Zeng Z X, Li J L, Lu X, Wang L P, Xue Q J 2018 ACS Appl. Mater. Interfaces 10 2965Google Scholar

    [14]

    Dong Y C, Yang Y, Chu Z H, Zhang J X, He J N, Yan D R, Li D Y 2017 Ceram. Int. 43 9303Google Scholar

    [15]

    Janka L, Norpoth J, Eicher S, Rodríguez Ripoll M, Vuoristo P 2016 Mater. Des. 98 135Google Scholar

    [16]

    Ou Y X, Lin J, Tong S, Sproul W D, Lei M K 2016 Surf. Coat. Technol. 293 21Google Scholar

    [17]

    Wang L, Zhang S H, Chen Z, Li J L, Li M X 2012 Appl. Surf. Sci. 258 3629Google Scholar

    [18]

    Volkhonskii A O, Vereshchaka A A, Blinkov I V, Vereshchaka A S, Batako A D 2016 Int. J. Adv. 84 1647Google Scholar

    [19]

    Rebenne H E, Bhat D G 1994 Surf. Coat. Technol. 63 1Google Scholar

    [20]

    Wang C T, Ye Y W, Guan X Y, Hu J M, Wang Y X, Li J L 2016 Tribol. Int. 96 77Google Scholar

    [21]

    Guan X Y, Wang L P 2012 Tribol. Lett. 47 67Google Scholar

    [22]

    Donnet C, Belin M, Auge J C, Martin J M, Grill A, Patel V 1994 Surf. Coat. Technol. 68 626

    [23]

    Zhu Y, Cheng L F, Ma B S, Liu Y S, Zhang L T 2018 Surf. Coat. Technol. 337 209Google Scholar

    [24]

    Lien S Y, Cho Y S, Hsu C H, Shen K Y, Zhang S, Wu W Y 2019 Surf. Coat. Technol. 359 247Google Scholar

    [25]

    Ou Y X, Ouyang X P, Liao B, Zhang X, Zhang S 2019 Appl. Surf. Sci. 144 168

    [26]

    Wang P, Wang X, Chen Y, Zhang G, Liu W, Zhang J 2007 Appl. Surf. Sci. 253 3722Google Scholar

    [27]

    Lin Y H, Lin H D, Liu C K, Huang M W, Chen J R, Shih H C 2010 Diamond Relat. Mater. 19 1034Google Scholar

    [28]

    Luo J, Ou Y X, Zhang Z Q, Pang P, Chen L, Liao B B, Shang H Z, Zhang X, Wu X Y 2019 Mater. Res. Express 6 096418Google Scholar

    [29]

    Cao H S, Qi F G, Ouyang X P, Zhao N, Zhou Y, Li B, Luo W Z, Liao B, Luo J 2018 Materials 11 1742Google Scholar

    [30]

    Pelleg J, Zevin L Z, Lungo S, Croitoru N 1991 Thin Solid Films 197 117Google Scholar

    [31]

    Lee S C, Ho W Y, Huang C C, Meletis E L, Liu Y 1996 J. Mater. Eng. Perform. 5 64Google Scholar

    [32]

    He Z, Zhang S, Sun D 2019 Thin Solid Films 676 60Google Scholar

    [33]

    Hu J H, Shi Y N, Sauvage X, Sha G, Lu K 2017 Science 355 1292Google Scholar

    [34]

    Shulga Y U M, Troitskii V N, Aivazov M I, Borodko Y U G 1976 Zh. Neorg. Khim. 21 2621

    [35]

    Prieto P, Kirby R E 1995 J. Vac. Sci. Technol. A. 13 2819

    [36]

    Lee K, Kang N, Bae J S, Lee C W 2016 Met. Mater.Int. 22 842Google Scholar

    [37]

    Ou Y X, Lin J, Tong S E, Che H L, Sproul W D, Lei M K 2015 Appl. Surf. Sci. 351 332Google Scholar

    [38]

    Ou Y X, Chen H, Li Z Y, Lin J, Pan W, Lei M K 2018 J. Am. Ceram. Soc. 101 5166Google Scholar

    [39]

    Leyland A, Matthews A 2004 Surf. Coat. Technol. 177 317

    [40]

    Dang C Q, Li J L, Wang Y, Chen J M 2016 Appl. Surf. Sci. 386 224Google Scholar

  • 图 1  磁过滤阴极弧等离子体沉积设备示意图

    Fig. 1.  The schematic diagram of FCVAD system.

    图 2  厚TiN涂层的制备工艺示意图

    Fig. 2.  Schematic diagram of preparation process of thick TiNcoating.

    图 3  TiN涂层厚度随沉积时间的变化

    Fig. 3.  The evolution of thickness of TiN coatings with deposition time.

    图 4  (a) 不同沉积时间的TiN涂层的XRD谱图; (b) 不同沉积时间的TiN涂层的晶粒尺寸; (c) TiN-125涂层的XRD谱图

    Fig. 4.  (a) XRD patterns of all of the TiN coatings with different deposition time; (b) the grain size of all of the TiN coatings with different deposition time; (c) XRD patterns of TiN-125 coating.

    图 5  TiN-125涂层N 1s的XPS谱图

    Fig. 5.  XPS spectta of N 1s of TiN-125 coating.

    图 6  不同沉积时间下的TiN涂层的AFM图及表面粗糙度 (a) 125 min; (b) 150 min; (c) 190 min; (d) 210 min; (e) 270 min; (f) 不同TiN涂层的表面粗糙度

    Fig. 6.  The AFM and roughness of all of the TiN coatings with different deposition time: (a) 125 min; (b) 150 min; (c) 190 min; (d) 210 min; (e) 270 min; (f) roughness of all of the TiN coatings.

    图 7  不同沉积时间下TiN涂层的SEM截面形貌 (a) 125 min; (b) 150 min; (c) 190 min; (d) 210 min; (e) 270 min;

    Fig. 7.  Cross-sectional SEM micrographsof TiN coatings with different deposition time: (a) 125 min; (b) 150 min; (c) 190 min; (d) 210 min; (e) 270 min.

    图 8  不同沉积时间下TiN涂层的硬度和弹性模量

    Fig. 8.  Hardness and elastic modulus of TiN coatings with different depositiontime.

    图 9  不同沉积时间下TiN涂层的$ H/E^* $$ H^3/E^{*2} $

    Fig. 9.  $ H/E^* $ and $ H^3/E^{*2} $ value of TiN coatings with different deposition time.

    图 10  不同TiN涂层的洛氏压痕形貌 (a) TiN-125; (b) TiN-150; (c) TiN-190; (d) TiN-210; (e) TiN-270

    Fig. 10.  SEM images of HRC indents of different TiN coatings. (a) TiN-125; (b) TiN-150; (c) TiN-190; (d) TiN-210; (e) TiN-270

    图 11  不同沉积时间下TiN涂层的内应力变化

    Fig. 11.  Theevolutionofinternalstress of TiN coatings with different deposition time.

    图 12  (a) TiN涂层的摩擦系数随测试时间的变化; (b) 不同沉积时间下TiN涂层的磨损速率

    Fig. 12.  (a) The evolution of coefficient of friction of TiN coatings with testing time; (b) wear rate of TiN coatings with different deposition time.

    图 13  不同TiN涂层的表面磨损形貌

    Fig. 13.  SurfacewearmorphologyofdifferentTiNcoatings.

  • [1]

    Chavda M R, Dave D P, Chauhan K V, Rawal S K 2016 Proc. Technol. 23 36Google Scholar

    [2]

    Sun Z P, He G Y, Meng Q J, Li Y Q, Tian X D 2019 Chin. J. Aeronaut

    [3]

    Liang W, Yang J J, Zhang F F, Lu C Y, Wang L M, Liao J L, Yang Y Y, Liu N 2018 J. Nucl. Mater. 501 388Google Scholar

    [4]

    Swadźba L, Formanek B, Gabriel H M, Liberski P, Podolski P 1993 Surf. Coat. Technol. 62 486Google Scholar

    [5]

    Zhou D P, Peng H, Zhu L, Guo H B, Gong S K 2014 Surf. Coat. Technol. 258 102Google Scholar

    [6]

    Hetmańczyk M, Swadźba L, Mendala B 2007 J. Achiev. Mater. Manuf. Eng. 24 372

    [7]

    Li J Z, Zheng H, Sinkovits T, Hee A C, Zhao Y 2015 Appl. Surf. Sci. 355 502Google Scholar

    [8]

    Djabella H, Arnell R 1993 Thin Solid Films 235 156Google Scholar

    [9]

    Hintermann H 1984 Wear 100 381Google Scholar

    [10]

    Wang L, Zhong X H, Zhao YX, Tao S Y, Zhang W, Wang Y, Sun X G 2014 J.Asian Ceram. Soc. 2 102Google Scholar

    [11]

    Wang J, Pu J, Zhang G G, Wang L P 2013 ACS Appl. Mater. Interfaces 5 5015Google Scholar

    [12]

    Wei R, Langa E, Rincon C, Arps J H 2006 Surf. Coat. Technol. 201 4453Google Scholar

    [13]

    Li Z C, Wang Y X, Cheng X Y, Zeng Z X, Li J L, Lu X, Wang L P, Xue Q J 2018 ACS Appl. Mater. Interfaces 10 2965Google Scholar

    [14]

    Dong Y C, Yang Y, Chu Z H, Zhang J X, He J N, Yan D R, Li D Y 2017 Ceram. Int. 43 9303Google Scholar

    [15]

    Janka L, Norpoth J, Eicher S, Rodríguez Ripoll M, Vuoristo P 2016 Mater. Des. 98 135Google Scholar

    [16]

    Ou Y X, Lin J, Tong S, Sproul W D, Lei M K 2016 Surf. Coat. Technol. 293 21Google Scholar

    [17]

    Wang L, Zhang S H, Chen Z, Li J L, Li M X 2012 Appl. Surf. Sci. 258 3629Google Scholar

    [18]

    Volkhonskii A O, Vereshchaka A A, Blinkov I V, Vereshchaka A S, Batako A D 2016 Int. J. Adv. 84 1647Google Scholar

    [19]

    Rebenne H E, Bhat D G 1994 Surf. Coat. Technol. 63 1Google Scholar

    [20]

    Wang C T, Ye Y W, Guan X Y, Hu J M, Wang Y X, Li J L 2016 Tribol. Int. 96 77Google Scholar

    [21]

    Guan X Y, Wang L P 2012 Tribol. Lett. 47 67Google Scholar

    [22]

    Donnet C, Belin M, Auge J C, Martin J M, Grill A, Patel V 1994 Surf. Coat. Technol. 68 626

    [23]

    Zhu Y, Cheng L F, Ma B S, Liu Y S, Zhang L T 2018 Surf. Coat. Technol. 337 209Google Scholar

    [24]

    Lien S Y, Cho Y S, Hsu C H, Shen K Y, Zhang S, Wu W Y 2019 Surf. Coat. Technol. 359 247Google Scholar

    [25]

    Ou Y X, Ouyang X P, Liao B, Zhang X, Zhang S 2019 Appl. Surf. Sci. 144 168

    [26]

    Wang P, Wang X, Chen Y, Zhang G, Liu W, Zhang J 2007 Appl. Surf. Sci. 253 3722Google Scholar

    [27]

    Lin Y H, Lin H D, Liu C K, Huang M W, Chen J R, Shih H C 2010 Diamond Relat. Mater. 19 1034Google Scholar

    [28]

    Luo J, Ou Y X, Zhang Z Q, Pang P, Chen L, Liao B B, Shang H Z, Zhang X, Wu X Y 2019 Mater. Res. Express 6 096418Google Scholar

    [29]

    Cao H S, Qi F G, Ouyang X P, Zhao N, Zhou Y, Li B, Luo W Z, Liao B, Luo J 2018 Materials 11 1742Google Scholar

    [30]

    Pelleg J, Zevin L Z, Lungo S, Croitoru N 1991 Thin Solid Films 197 117Google Scholar

    [31]

    Lee S C, Ho W Y, Huang C C, Meletis E L, Liu Y 1996 J. Mater. Eng. Perform. 5 64Google Scholar

    [32]

    He Z, Zhang S, Sun D 2019 Thin Solid Films 676 60Google Scholar

    [33]

    Hu J H, Shi Y N, Sauvage X, Sha G, Lu K 2017 Science 355 1292Google Scholar

    [34]

    Shulga Y U M, Troitskii V N, Aivazov M I, Borodko Y U G 1976 Zh. Neorg. Khim. 21 2621

    [35]

    Prieto P, Kirby R E 1995 J. Vac. Sci. Technol. A. 13 2819

    [36]

    Lee K, Kang N, Bae J S, Lee C W 2016 Met. Mater.Int. 22 842Google Scholar

    [37]

    Ou Y X, Lin J, Tong S E, Che H L, Sproul W D, Lei M K 2015 Appl. Surf. Sci. 351 332Google Scholar

    [38]

    Ou Y X, Chen H, Li Z Y, Lin J, Pan W, Lei M K 2018 J. Am. Ceram. Soc. 101 5166Google Scholar

    [39]

    Leyland A, Matthews A 2004 Surf. Coat. Technol. 177 317

    [40]

    Dang C Q, Li J L, Wang Y, Chen J M 2016 Appl. Surf. Sci. 386 224Google Scholar

  • [1] 杨变, 杨治虎, 徐秋梅, 郭义盼, 武晔虹, 宋张勇, 蔡晓红. 低速84Kr15+, 17+离子轰击GaAs单晶. 物理学报, 2014, 63(5): 053201. doi: 10.7498/aps.63.053201
    [2] 韩亮, 邵鸿翔, 何亮, 陈仙, 赵玉清. 氮离子轰击能量对ta-C:N薄膜结构的影响. 物理学报, 2012, 61(10): 106803. doi: 10.7498/aps.61.106803
    [3] 王兴, 赵永涛, 程锐, 周贤明, 徐戈, 孙渊博, 雷瑜, 王瑜玉, 任洁茹, 虞洋, 李永峰, 张小安, 李耀宗, 梁昌慧, 肖国青. 重离子轰击Ta靶引起的多电离效应. 物理学报, 2012, 61(19): 193201. doi: 10.7498/aps.61.193201
    [4] 韩亮, 陈仙, 杨立, 王炎武, 王晓艳, 赵玉清. 高能氮离子轰击对四面体非晶碳膜的表面改性和摩擦系数影响的研究. 物理学报, 2011, 60(6): 066804. doi: 10.7498/aps.60.066804
    [5] 徐秋梅, 杨治虎, 杜树斌, 常宏伟, 张艳萍. 氧离子轰击引起钽的L壳层X射线发射截面的研究. 物理学报, 2011, 60(9): 093202. doi: 10.7498/aps.60.093202
    [6] 王建国, 徐忠锋, 赵永涛, 王瑜玉, 李德慧, 赵迪, 肖国青. 反冲原子对低速离子轰击Si表面时电子发射产额的影响. 物理学报, 2010, 59(11): 7803-7807. doi: 10.7498/aps.59.7803
    [7] 陈志刚, 朱小蓉, 汤小丽, 孔德军, 王 玲. 火焰喷涂重熔Ni基WC复合涂层的耐磨性能试验研究. 物理学报, 2007, 56(12): 7320-7329. doi: 10.7498/aps.56.7320
    [8] 冯文然, 阎殿然, 何继宁, 陈光良, 顾伟超, 张谷令, 刘赤子, 杨思泽. 反应等离子喷涂纳米TiN涂层的显微硬度及微观结构研究. 物理学报, 2005, 54(5): 2399-2402. doi: 10.7498/aps.54.2399
    [9] 薛建明, 二宫咎, 今西信嗣. MeV Si离子轰击SiO2溅射行为研究. 物理学报, 2004, 53(5): 1445-1449. doi: 10.7498/aps.53.1445
    [10] 王必本, 张兵, 郑坤, 郝伟, 王万录, 廖克俊. 离子轰击控制准直碳纳米管生长的研究. 物理学报, 2004, 53(4): 1255-1259. doi: 10.7498/aps.53.1255
    [11] 王必本, 王万录, 廖克俊, 肖金龙, 方亮. 离子的轰击对Si衬底上金刚石核附着力的影响. 物理学报, 2001, 50(2): 251-255. doi: 10.7498/aps.50.251
    [12] 王震遐, 俞国庆, 阮美龄, 朱福英, 朱德彰, 潘浩昌, 徐洪杰. Ar+离子束轰击在石墨表面形成六方金刚石纳米晶的研究. 物理学报, 2000, 49(8): 1524-1527. doi: 10.7498/aps.49.1524
    [13] 廖梅勇, 张键辉, 秦复光, 刘志凯, 杨少延, 王占国, 李述汤. 质量分离低能离子束沉积碳膜及离子轰击效应. 物理学报, 2000, 49(11): 2186-2190. doi: 10.7498/aps.49.2186
    [14] 王宇钢, 康一秀, 赵渭江, 颜莎, 严隽珏, 杨威生, 翟鹏济, 唐孝威. 扫描隧道显微镜观察石墨被Au离子轰击后的表面损伤(Ⅱ). 物理学报, 1997, 46(10): 1965-1971. doi: 10.7498/aps.46.1965
    [15] 严隽珏, 白传勇, 杨威生, 王宇刚, 赵渭江, 虞福春, 翟鹏济, 唐孝威. 用扫描隧道显微镜观察石墨被Au离子轰击后的表面损伤. 物理学报, 1993, 42(6): 1027-1034. doi: 10.7498/aps.42.1027
    [16] 潘冀生, 王震遐, 陶振兰, 章骥平, 张慧明, 赵烈. 离子轰击引起的表面形貌对Ag的溅射产额的影响. 物理学报, 1991, 40(12): 2018-2023. doi: 10.7498/aps.40.2018
    [17] 邵其鋆, 霍裕昆, 陈建新, 吴士明, 潘正瑛. 离子轰击入射角对溅射参数的影响. 物理学报, 1991, 40(4): 659-666. doi: 10.7498/aps.40.659
    [18] 樊永年, 叶恒强. 氮离子轰击钼(111)表面及退火后形成的有序结构. 物理学报, 1986, 35(5): 672-676. doi: 10.7498/aps.35.672
    [19] 樊永年. 氮离子轰击钼(001)和钼(110)表面形成的有序结构. 物理学报, 1985, 34(6): 813-819. doi: 10.7498/aps.34.813
    [20] 冯锡淇, 任琮欣, 李川, 陈光梦. 低能离子轰击后铌酸锂晶体表面层的性质. 物理学报, 1984, 33(2): 231-234. doi: 10.7498/aps.33.231
计量
  • 文章访问数:  7225
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-06
  • 修回日期:  2020-04-18
  • 刊出日期:  2020-05-20

/

返回文章
返回