搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿铁电半导体的光催化研究现状及其展望

崔宗杨 谢忠帅 汪尧进 袁国亮 刘俊明

引用本文:
Citation:

钙钛矿铁电半导体的光催化研究现状及其展望

崔宗杨, 谢忠帅, 汪尧进, 袁国亮, 刘俊明

Research progress and prospects of photocatalytic devices with perovskite ferroelectric semiconductors

Cui Zong-Yang, Xie Zhong-Shuai, Wang Yao-Jin, Yuan Guo-Liang, Liu Jun-Ming
PDF
HTML
导出引用
  • 钙钛矿材料可以分为ABO3氧化物和ABX3 (X = Cl, Br或I)卤化物两大类, 它们都具有丰富的物理性质和优异的光电性能, 比如铁电性和光催化性能. 本文介绍了BiFeO3MAPbI3等铁电半导体光催化材料和异质结的制备方法, 总结了它们在光电催化方面的研究进展. 目前研究者已经针对氧化物光催化材料做了各种研究, 包括: 降低吸光层铁电材料的带隙, 制备铁电/窄带半导体吸光层异质结, 制备比表面积很大的纳米片、纳米棒或者其他纳米结构, 以便吸收更多可见光; 让铁电极化及其退极化场垂直于光催化工作电极表面, 通过铁电/半导体异质结能带弯曲提供内电场, 通过外电场进行光电催化, 从而通过内、外电场高效分离光生-电子空穴对; 通过光催化或者光电催化降解染料、分解水制氢、将CO2转换为燃料; 通过铁电、热释电和压电协同效应提高催化效应和能量转换效率. MAPbI3等卤素钙钛矿具有优异的半导体性质, 其铁电性可能是引起超长的少数载流子寿命和载流子扩散长度的原因. 通过优化光催化多层膜结构并添加防止电解液渗透的封装层可以避免MAPbI3被电解液分解, 从而制备了具有很高能量转换效率的光电催化结构. 最后, 我们分析和比较了这些钙钛矿铁电半导体在光电催化领域面临的挑战, 并展望了其应用前景.
    There are two types of perovskites, i.e. ABO3-type oxides and ABX3-type (X = F, Cl, Br and I) halides. Both of them exhibit rich physical properties and excellent photoelectric properties, such as ferroelectric and photocatalytic properties. In this paper we introduce the methods of preparing the ferroelectric semiconductors (i.e. BiFeO3 and MAPbI3) and their heterogeneous junctions for photocatalytic applications, and summarizes the research progress and applications of photocatalytic devices. Various researches about oxide photocatalytic devices have been carried out. At first, several methods have been developed to absorb more visible light, such as reducing the band gap of ferroelectric materials, preparing junction composed of ferroelectric layer and light absorption layer with narrow-bandgap semiconductor, and growing nanosheet, nanorods or other nanostructures with large specific surface areas. Second, some electric fields are introduced to effectively separate light activated electron-holes pairs. In addition to the external electric field, an inner electric field can be introduced through the ferroelectric polarization perpendicular to the surface and/or the energy band bending at the ferroelectric/semiconductor interface. Thirdly, the degradation of dyes, the decomposition of water into hydrogen and the conversion of CO2 into fuel have been realized in many photocatalytic or photoelectrocatalytic devices. Fourthly, the synergies of ferroelectric, pyroelectric and piezoelectric effects can largely increase the photocatalytic efficiency and the energy conversion efficiency. Furthermore, MAPbI3 and other halogen perovskites show excellent semiconductor properties, such as the long carrier diffusion length and long minority carrier lifetime which may originate from ferroelectric dipoles. The MAPbI3 can be applied to photocatalytic devices with a high energy conversion efficiency by optimizing the photocatalytic multi-layer structure and adding a package layer that prevents electrolyte for decomposing the MAPbI3. Finally, we analyze the challenges of the high-efficiency photocatalytic devices and look forward to their application prospects.
      通信作者: 袁国亮, yuanguoliang@njust.edu.cn
    • 基金项目: 国家级-国家自然科学基金(51790492、51431006、51902159 、61874055)
      Corresponding author: Yuan Guo-Liang, yuanguoliang@njust.edu.cn
    [1]

    Fujishima A, Honda K 1972 Nature 238 37Google Scholar

    [2]

    Morrison S R, Freund T 1967 J. Chem. Phys. 47 1543Google Scholar

    [3]

    Ctibor P, Ageorges H, Stengl V, Murafa N, Pis L, Zahoranova T, Nehasil V, Pala Z 2011 Ceram. Int. 37 2561Google Scholar

    [4]

    Yu Y H, Wang X D 2018 Adv. Mater. 30 1800154Google Scholar

    [5]

    Yang W G, Yu Y H, Starr M B, Yin X, Li Z D, Kvit A, Wang S F, Zhao P, Wang X D 2015 Nano Lett. 15 7574Google Scholar

    [6]

    He H C, Liao A Z, Guo W L, Luo W J, Zhou Y, Zou Z G 2019 Nano Today 28 100763Google Scholar

    [7]

    Ren P R, Fan H Q, Wang X 2012 Catal. Commun. 25 32Google Scholar

    [8]

    Liu S, Liu X P, Chen Y S, Jiang R Y 2010 J Alloy. Compd. 506 877Google Scholar

    [9]

    Singh A P, Kumari S, Shrivastav R, Dass S, Satsangi V R 2008 Int. J Hydrogen. Energ. 33 5363Google Scholar

    [10]

    De Wolf S, Holovsky J, Moon S J, Loper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar

    [11]

    Zhang G, Liu G, Wang L Z, Irvine J T S 2016 Chem. Soc. Rev. 45 5951Google Scholar

    [12]

    Miyauchi M, Takashio M, Tobimatsu H 2004 Langmuir 20 232Google Scholar

    [13]

    Liu Q, Zhou Y, You L, Wang J L, Shen M R, Fang L 2016 Appl. Phys. Lett. 108 022902Google Scholar

    [14]

    Cho C M, Noh J H, Cho I S, An J S, Hong K S, Kim J Y 2008 J. Am. Ceram. Soc. 91 3753Google Scholar

    [15]

    Li S, AlOtaibi B, Huang W, Mi Z, Serpone N, Nechach R, Rosei F 2015 Small 11 4018Google Scholar

    [16]

    Yuan Y B, Reece T J, Sharma P, Poddar S, Ducharme S, Gruverman A, Yang Y, Huang J H 2011 Nat. Mater. 10 296Google Scholar

    [17]

    Hoffman J, Pan X, Reiner J W, Walker F J, Han J P, Ahn C H, Ma T P 2010 Adv. Mater. 22 2957Google Scholar

    [18]

    Li H D, Sang Y H, Chang S J, Huang X, Zhang Y, Yang R S, Jiang H D, Liu H, Wang Z L 2015 Nano Lett. 15 2372Google Scholar

    [19]

    Shi J, Zhao P, Wang X D 2013 Adv. Mater. 25 916Google Scholar

    [20]

    Hu W J, Wang Z H, Yu W L, Wu T 2016 Nat. Commun. 7 10808Google Scholar

    [21]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys.Sin. 69 017301Google Scholar

    [22]

    Liu X P, Xing J C, Wang W D, Shan Z C, Xu F F, Huang F Q 2007 J. Phys. Chem. C 111-112 18288

    [23]

    Chen S F, Lei J, Tang W M, Fu X L 2013 Dalton Trans. 42 10759Google Scholar

    [24]

    Li S, Lin Y H, Zhang B P, Li J F, Nan C W 2009 J. Appl. Phys. 105 054310Google Scholar

    [25]

    Gao H, Yang Y X, Wang Y J, Chen L, Wang J L, Yuan G L, Liu J M 2019 ACS Appl. Mater. Interfaces 11 35169Google Scholar

    [26]

    Gao W X, Zhu Y, Wang Y J, Yuan G L, Liu J M 2020 J. Materiomics 6 1Google Scholar

    [27]

    Pang H Z, Zhang F Y, Zeng M, Gao X S, Qin M H, Lu X B, Gao J W, Dai J Y, Li Q L 2016 npj Quantum Mater. 1 16015Google Scholar

    [28]

    Espinosa H D, Bernal R A, Jolandan M M 2012 Adv. Mater. 34 4656Google Scholar

    [29]

    Haertling G H 2004 J Am. Ceram. Soc. 82 2366Google Scholar

    [30]

    Scott J F 2000 J. Appl. Phys. 88 6092Google Scholar

    [31]

    Wang M Y, Wang B, Huang F, Lin Z Q 2019 Angew. Chem. Int. Ed. 58 7526Google Scholar

    [32]

    Gao P, Grätzel M, Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448

    [33]

    Wang W, Tadé M O, Shao Z P 2015 Chem. Soc. Rev. 44 5371Google Scholar

    [34]

    Fang L, You L, Liu J M 2018 Ferroelectrics in Photocatalysis (Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA) pp2—12

    [35]

    Zhao H L, Pan F P, Li Y 2017 J. Materiomics 3 17Google Scholar

    [36]

    Shen S H, Kronawitter C, Kiriakidis G 2017 J. Materiomics 3 1Google Scholar

    [37]

    Zhang Z J, Zhao A D, Wang F M, Ren J S, Qu X G 2016 Chem. Commun. 52 5550Google Scholar

    [38]

    Maeda K, Domen K 2007 J. Phys. Chem. C 111 7851Google Scholar

    [39]

    Nakata K, Fujishima A 2012 J. Photoch Photobio C 13 169Google Scholar

    [40]

    Litter M I, Navio J A 1996 J. Photoch. Photobio. A 98 171

    [41]

    Choi W Y, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669Google Scholar

    [42]

    Singh S, Khare N 2017 Nano Energy 38 335Google Scholar

    [43]

    Cui Y F, Briscoe J, Dunn S 2013 Chem. Mater. 25 4215Google Scholar

    [44]

    Alex K V, Prabhakaran A, Jayakrishnan A R, Kamakshi K, Silva J P B, Sekhar K C 2019 ACS Appl. Mater. Interfaces 11 40114Google Scholar

    [45]

    Li J, Zhang G H, Han S F, Cao J W, Duan L H, Zeng T 2018 Chem. Commun. 54 723Google Scholar

    [46]

    Li W, Wang F, Li M, Chen X, Ren Z H, Tian H, Li X, Lu Y H 2018 Nano Energy 45 304Google Scholar

    [47]

    Yu J X, Chen Z Q, Wang Y, Ma Y Y, Feng Z, Lin H J, Wu Y, Zhao L H, He Y M 2018 J. Mater. Sci. 53 7453Google Scholar

    [48]

    Yin X F, Li X N, Liu H, Gu W, Zou W, Zhu L Y, Fu Z P, Lu Y L 2018 Nano Energy 49 489Google Scholar

    [49]

    Fu Q, Wang X J, Li C Y, Sui Y, Han Y P, Lv Z, Song B, Xu P 2016 RSC Adv. 6 108883Google Scholar

    [50]

    Yu D F, Liu Z H, Zhang J M, Li S, Zhao Z C, Zhu L F, Liu W S, Lin Y H, Liu H, Zhang Z T 2019 Nano Energy 58 695Google Scholar

    [51]

    Lo M K, Lee S Y, Chang K S 2015 J. Phys. Chem. C 119 5218

    [52]

    Wang Y C, Wu J M 2019 Adv. Funct. Mater. 30 1907619

    [53]

    Wang Y T, Chang K S 2016 J. Am. Ceram. Soc. 99 2593Google Scholar

    [54]

    Feng Y W, Li H, Ling L L, Yan S, Pan D L, Ge H, Li H X, Bian Z F 2018 Environ. Sci. Technol. 52 7842Google Scholar

    [55]

    Huang H W, Tu S C, Du X, Zhang Y H 2018 J. Colloid Interface Sci. 509 113Google Scholar

    [56]

    Li H F, Quan X, Chen S, Yu H T 2017 Appl. Catal. B 209 591Google Scholar

    [57]

    Xue X, Zang W L, Deng P, Wang Q, Xing L L, Zhang Y, Wang Z L 2015 Nano Energy 13 414Google Scholar

    [58]

    Wang L F, Liu S H, Wang Z, Zhou Y L, Qin Y, Wang Z L 2016 ACS Nano 10 2636Google Scholar

    [59]

    Chang J H, Lin H N 2014 Mater. Lett. 132 134Google Scholar

    [60]

    Kim T H, Baek S H, Yang S M, Kim Y S, Jeon B C, Lee D, Chung J S, Eom C B, Yoon J G, Noh T W 2011 Appl. Phys. Lett. 99 012905Google Scholar

    [61]

    Song J, Kim T L, Lee J, Cho S Y, Cha J, Jeong S Y, An H, Kim W S, Jung Y S, Park J Y, Jung G Y, Kim D Y, Jo J Y, Bu S D, Jang H W, Lee S 2018 Nano Res. 11 642Google Scholar

    [62]

    Huang W, Harnagea C, Tong X, Benetti D, Sun S H, Chaker M, Rosei F, Nechache R 2019 ACS Appl. Mater. Interfaces 11 13185Google Scholar

    [63]

    Wang Y S, Dong W, Zheng F G, Fang L, Shen M R 2015 Energy Environ. Focus 4 95Google Scholar

    [64]

    Singh S, Khare N 2017 Appl. Phys. Lett. 110 152902Google Scholar

    [65]

    Fu H W, Song Y, Wu Y Q, Huang H T, Fan G Z, Xu J, Li Z S, Zou Z G 2018 Appl. Phys. Lett. 112 073901Google Scholar

    [66]

    Liu Z R, Wang L W, Yu X, Zhang J, Yang R Q, Zhang X D, Ji Y C, Wu M Q, Deng L, Li L, Wang Z L 2019 Adv. Funct. Mater. 29 1807279Google Scholar

    [67]

    Wu F, Yu Y H, Yang H, German L N, Li Z, Chen J G, Yang W G, Huang L, Shi W M, Wang L J, Wang X D 2017 Adv. Mater. 29 1701432Google Scholar

    [68]

    Hoang M T, Pham N D, Han J H, Gardner J M, Oh I 2016 ACS Appl. Mater. Interfaces 8 11904Google Scholar

    [69]

    Crespo-Quesada M, Pazos-Quton L M, Warnan J, Kuehnel M F, Friend R H, Reisner E 2016 Nat. Commun. 7 12555Google Scholar

    [70]

    Zhang H F, Yang Z, Yu W, Wang H, Ma W G, Zong X, Li C 2018 Adv. Energy Mater. 8 1800795Google Scholar

    [71]

    Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M K, Park N G, Tilley S D, Fan H J, Grätzel M 2014 Science 345 1593Google Scholar

    [72]

    Zhang K, Jin B J, Park C, Cho Y, Song X F, Shi X J, Zhang S L, Kim W, Zeng H B, Park J H 2019 Nat. Commun. 10 2001Google Scholar

    [73]

    Wang G M, Wang H Y, Ling Y C, Tang Y C, Yang X Y, Fitzmorris R C, Wang C C, Zhang J Z, Li Y 2011 Nano Lett. 11 3026Google Scholar

    [74]

    Deng X, Song C, Tong Y L, Yuan G L, Gao F, Liu D Q, Zhang S T 2018 Phys. Chem. Chem. Phys. 20 3648Google Scholar

    [75]

    Ji W, Yao K, Lim Y F, Liang Y C, Suwardi A 2013 Appl. Phys. Lett. 103 062901Google Scholar

    [76]

    Huang Y L, Chang W S, Van C N, Liu H J, Tsai K A, Chen J W, Kuo H H, Tzeng W Y, Chen Y C, Wu C L, Luo C W, Hsu Y J, Chu Y H 2016 Nanoscale 8 15795Google Scholar

    [77]

    Cao D W, Wang Z J, Nasori, Wen L Y, Mi Y, Lei Y 2014 Angew. Chem. Int. Ed. 53 11027Google Scholar

    [78]

    Wu J G, Wang J 2009 J. Appl. Phys. 106 104111Google Scholar

    [79]

    Béa H, Bibes M, Zhu X H, Fusil1 S, Bouzehouane K, Petit S, Kreisel J, Barthélémy A 2008 Appl. Phys. Lett. 93 072901Google Scholar

    [80]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719Google Scholar

    [81]

    Singh S K, Kim Y K, Funakubo H, Ishiwara H 2006 Appl. Phys. Lett. 88 162904Google Scholar

    [82]

    Chen Z H, He L, Zhang F, Jiang J, Meng J W, Zhao B Y, Jiang A Q 2013 J. Appl. Phys. 113 184106Google Scholar

    [83]

    Zhu J, Luo W B, Li Y R 2008 Appl. Surf. Sci. 255 3466Google Scholar

    [84]

    Sone K, Naganuma H, Miyazaki T, Nakajima T, Okamura S 2010 Jpn. J. Appl. Phys. 49 09MB03Google Scholar

    [85]

    Baek S H, Folkman C M, Park J W, Lee S, Bark C W, Tybell T, Eom C B 2011 Adv. Mater. 23 1621Google Scholar

    [86]

    Das R R, Kim D M, Baek S H, Eom C B, Zavaliche F, Yang S Y, Ramesh R, Chen Y B, Pan X Q, Ke X, Rzchowski M S 2006 Appl. Phys. Lett. 88 242904Google Scholar

    [87]

    Wu H, Tan H L, Toe C Y, Scott J, Wang L Z, Amal R, Ng Y H 2019 Adv. Mater. 32 1904717

    [88]

    Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q X, Santori E A, Lewis N S 2010 Chem. Rev. 110 6446Google Scholar

    [89]

    Huang J, Wang Y, Liu X Q, Li Y C, Hu X Q, He B, Shu Z, Li Z, Zhao Y L 2019 Nano Energy 59 33Google Scholar

    [90]

    Ng Y H, Lwase A, Kudo A, Amal R 2010 J. Phys. Chem. Lett. 1 2607Google Scholar

    [91]

    Sivula K, van de Krol R 2016 Nat. Rev. Mater. 1 15010Google Scholar

    [92]

    Luo W J, Yang Z S, Li Z S, Zhang J Y, Liu J G, Zhao Z Y, Wang Z Q, Yan S C, Yu T, Zou Z G 2011 Energy Environ. Sci. 4 4046Google Scholar

    [93]

    Su J Y, Bai Z W, Huang B L, Quan X, Chen G H 2016 Nano Energy 24 148Google Scholar

    [94]

    Shi X, Zhang K, Shin K, Ma M, Kwon J, Choi I T, Kim J K, Kim H K, Wang D H, Park J H 2015 Nano Energy 13 182Google Scholar

    [95]

    Zhou L, Wang W Z, Liu S W, Zhang L H, Xu H L, Zhu W 2006 J. Mol. Catal. A:Chem. 252 120Google Scholar

    [96]

    Gratzel M 2001 Nature 414 338Google Scholar

    [97]

    Shi X J, Choi I Y, Zhang K, Kwon J, Kim D Y, Lee J K, Oh S H, Kim J K, Park J H 2014 Nat. Commun. 5 4775Google Scholar

    [98]

    Parmar K P S, Kang H J, Bist A, Dua P, Jang J S, Lee J S 2012 ChemSusChem 5 1926Google Scholar

    [99]

    Murcia-López S, Fàbrega C, Monllor-Satoca D, Hernández-Alonso M D, Penelas-Pérez G, Morata A, Morante J R, Andreu T 2016 ACS Appl. Mater. Interfaces 8 4076Google Scholar

    [100]

    Park Y, McDonald K J, Choi K S 2013 Chem. Soc. Rev. 42 2321Google Scholar

    [101]

    Liu R, ZhengZ, Spurgeon J, Yang X G 2014 Energy Environ. Sci. 7 2504Google Scholar

    [102]

    Xie J L, Guo C X, Yang P P, Wang X D, Liu D Y, Li C M 2017 Nano Energy 31 28Google Scholar

    [103]

    Jia Q X, Iwashina K, Kudo A 2012 Proc. Natl. Acad. Sci. U. S. A. 109 11564Google Scholar

    [104]

    Irwin M D, Buchholz D B, Hains A W, Chang R P H, Marks T J 2008 Proc. Natl. Acad. Sci. U. S. A. 105 2783Google Scholar

    [105]

    Huang W, Nechache R, Li S, Chaker M, Rosei F 2016 J. Am. Ceram. Soc. 99 226Google Scholar

    [106]

    Park J H, Seo J, Park S, Shin S S, Kim Y C, Jeon N J, Shin H W, Ahn T K, Noh J H, Yoon S C, Hwang C S, Seok S I 2015 Adv. Mater. 27 4013Google Scholar

    [107]

    Sun K, McDowell M T, Nielander A C, Hu S, Shaner M R, Yang F, Brunschwig B S, Lewis N S 2015 J. Phys. Chem. Lett. 6 592Google Scholar

    [108]

    Zhai P F, Yi Q H, Jian J, Wang H Y, Song P Y, Dong C, Lu X, Sun Y H, Zhao J, Dai X, Lou Y H, Yang H, Zou G F 2014 Chem. Commun. 50 1854Google Scholar

    [109]

    Ong S T, Keng P S, Lee W N, Ha S T, Hung Y T 2011 Water 3 157Google Scholar

    [110]

    Konstantinou I K, Albanis T A 2004 Appl. Catal. B 49 1Google Scholar

    [111]

    Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y B, Pan X Q, Gopalan V, Chen L Q, Schlom D G, Eom C B 2004 Science 306 1005Google Scholar

    [112]

    Vijatovic M M, Bobic ́J D, Stojanovic ́B A ́ 2008 Sci. Sinter. 40 155Google Scholar

    [113]

    Zhou T, Zha J W, Cui R Y, Fan B H, Yuan J K, Dang Z M 2011 ACS Appl. Mater. Interfaces 3 2184Google Scholar

    [114]

    Frey M H, Payne D A 1996 Phys. Rev. B 54 3158Google Scholar

    [115]

    Yuan G L, Chen J P, Xia H, Liu J M, Liu Z G 2013 Appl. Phys. Lett. 103 062903Google Scholar

    [116]

    Liu J W, Sun Y, Li Z H 2012 CrystEngComm 14 1473Google Scholar

    [117]

    Song W J, Salvador P A, Rohrer G S 2018 ACS Appl. Mater. Interfaces 10 41450Google Scholar

    [118]

    Huang X Y, Wang K Q, Wang Y Z, Wang B, Zhang L L, Gao F, Zhao Y, Feng W H, Zhang S Y, Liu P 2018 Appl. Catal. B 227 322Google Scholar

    [119]

    Yang L, Ravi S K, Nandakumar D K, Alzakia F I, Lu W H, Zhang Y X, Yang J C, Zhang Q, Zhang X P, Tan S C 2019 Adv. Mater. 31 1902963Google Scholar

    [120]

    Arney D, Watkins T, Maggard P A 2011 J. Am. Ceram. Soc. 94 1483Google Scholar

    [121]

    Reddy K H, Parida K 2013 ChemCatChem 5 3812Google Scholar

    [122]

    Hu Y X, Dong W, Zheng F G, Fang L, Shen M R 2014 Appl. Phys. Lett. 105 082903Google Scholar

    [123]

    Tabari T, Ebadi M, Singh D, Caglar B, Yagci M B 2018 J. Alloys Compd. 750 248Google Scholar

    [124]

    Liu Y, Ye S, Xie H C, Zhu J, Shi Q, Ta N, Chen R T, Gao Y Y, An H Y, Nie W, Jing H W, Fan F T, Li C 2020 Adv. Mater. 32 1906513Google Scholar

    [125]

    Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J, Schlom D G 2004 Nature 430 758Google Scholar

    [126]

    Singh S, Khare N 2017 Nano Energy 42 173Google Scholar

    [127]

    Li S, Zhang J M, Kibria M G, Mi Z T, Chaker M, Ma D L, Nechache R, Rosei F 2013 Chem. Commun. 49 5856Google Scholar

    [128]

    Gao L, Cui Y C, Wang J, Cavalli A, Standing A, Vu T T T, Verheijen M A, Haverkort J E M, Bakkers E P A M, Notten P H L 2014 Nano Lett. 14 3715Google Scholar

    [129]

    Ding Q P, Yuan Y P, Xiong X, Li R P, Huang H B, Li Z S, Yu T, Zou Z G, Yang S G 2008 J. Phys. Chem. C 112 18846Google Scholar

    [130]

    Choi J, Ryu S Y, Balcerski W, Lee T K, Hoffmann M R 2008 J. Mater. Chem. 18 2371Google Scholar

    [131]

    Zhang T T, Zhao K, Yu J G, Jin J, Qi Y, Li H Q, Hou X J, Liu G 2013 Nanoscale 5 8375Google Scholar

    [132]

    Yan L S, Zhang J, Zhou X M, Wu X X, Lan J Y, Wang Y S, Liu G, Yu J G, Zhi L J 2013 Int. J. Hydrogen Energy 38 3554Google Scholar

    [133]

    Lan J Y, Zhou X M, Liu G, Yu J G, Zhang J C, Zhi L J, Nie G J 2011 Nanoscale 3 5161Google Scholar

    [134]

    Zhang T T, Lei W Y, Liu P, Rodriguez J A, Yu J G, Qi Y, Liu G, Liu M H 2015 Chem. Sci. 6 4118Google Scholar

    [135]

    Khraisheh M, Khazndar A, Al-Ghouti M A 2015 Int. J. Energy Res. 39 1142Google Scholar

    [136]

    Park S, Lee C W, Kang M G, Kim S, Kim H J, Kwon J E, Park S Y, Kang C Y, Hong K S, Nam K T 2014 Phys. Chem. Chem. Phys. 16 10408Google Scholar

    [137]

    Li S, Zhang J M, Zhang B P, Huang W, Harnagea C, Nechache R, Zhu L F, Zhang S W, Lin Y H, Ni Liang, Sang Y H, Liu H, Rosei F 2017 Nano Energy 35 92Google Scholar

    [138]

    Wang Y J, Luo C T, Wang S H, Chen C, Yuan G L, Luo H S, Viehland D 2020 Adv. Electron. Mater. 6 1900949Google Scholar

    [139]

    Wu W Z, Wang L, Li Y L, Zhang F, Lin L, Niu S M, Chenet D, Zhang X, Hao Y F, Heinz T F, Hone J, Wang Z L 2014 Nature 514 470Google Scholar

    [140]

    Liang Z, Yan C F, Rtimi S, Bandara J 2019 Appl. Catal. B-Environ. 241 256Google Scholar

    [141]

    Li S, Zhao Z C, Zhao J Z, Zhang Z TLi X, Zhang J M 2020 ACS Appl. Nano Mater. 3 1063Google Scholar

    [142]

    Starr M B, Wang X D 2015 Nano Energy 14 296Google Scholar

    [143]

    Hong K S, Xu H F, Konishi H, Li X C 2012 J. Phys. Chem.C 116 13045Google Scholar

    [144]

    Lin H, Wu Z, Jia Y M, Li W J, Zheng R K, Luo H S 2014 Appl. Phys. Lett. 104 162907Google Scholar

    [145]

    Wu J M, Chang W E, Chang Y T, Chang C K 2016 Adv. Mater. 28 3718Google Scholar

    [146]

    Qian W Q, Wu Z, Jia Y M, Hong Y T, Xu X L, You H L, Zheng Y Q, Xia Y T 2017 Electrochem. Commun. 81 124Google Scholar

    [147]

    Wu M H, Lee J T, Chung Y J, Srinivaas M, Wu J M 2017 Nano Energy 40 369Google Scholar

    [148]

    Fu D S, Itoh M, Koshihara S Y 2008 Appl. Phys. Lett. 93 012904Google Scholar

    [149]

    Gao F, Cheng L H, Hong R Z, Liu J J, Yao Y H, Tian C S 2008 J. Mater. Sci.-Mater. Electron. 19 1228Google Scholar

    [150]

    Lin E Z, Wu J, Qin N, Yuan B W, Kang Z H, Bao D H 2019 Catal. Sci. Technol. 9 6863Google Scholar

    [151]

    Mushtaq F, Chen X Z, Hoop M, Torlakcik H, Pellicer E, Sort J, Gattinoni C, Nelson B J, Pane S 2018 iScience 4 236Google Scholar

    [152]

    Prier C K, Rankic D A, MacMillan D W C 2013 Chem. Rev. 113 5322Google Scholar

    [153]

    Romero N A, Nicewicz D A 2016 Chem. Rev. 116 10075Google Scholar

    [154]

    Wang C S, Dixneuf P H, Soulé J F 2018 Chem. Rev. 118 7532Google Scholar

    [155]

    Skubi K L, Blum T R, Yoon T P 2016 Chem. Rev. 116 10035Google Scholar

    [156]

    Kubota K, Pang Y D, Miura A, Ito H 2019 Science 366 1500Google Scholar

    [157]

    Tu W G, Zhou Y, Zou Z G 2014 Adv. Mater. 26 4607Google Scholar

    [158]

    Dimitrijevic N M, Vijayan B K, Poluektov O G, Rajh T, Gray K A, He H Y, Zapol P 2011 J. Am. Chem. Soc. 133 3964Google Scholar

    [159]

    Lee J, Sorescu D C, Deng X Y 2011 J. Am. Chem. Soc. 133 10066Google Scholar

    [160]

    Tan S J, Feng H, Ji Y F, Wang Y, Zhao J, Zhao A D, Wang B, Luo Y, Yang J L, Hou J G 2012 J. Am. Chem. Soc. 134 9978Google Scholar

    [161]

    Indrakanti V P, Kubicki J D, Schobert H H 2009 Energy Environ. Sci. 2 745Google Scholar

    [162]

    Indrakanti V P, Schobert H H, Kubicki J D 2009 Energy Fuels 23 5247Google Scholar

    [163]

    Gagliardi C J, Westlake B C, Kent C A, Paul J J, Papanikolas J M, Meyer T J 2010 Coord. Chem. Rev. 254 2459Google Scholar

    [164]

    Tu S C, Zhang Y H, Reshak A H, Auluck S S, Ye L Q, Han X P, Ma T Y, Huang H W 2019 Nano Energy 56 840Google Scholar

    [165]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S I 2013 Nat. Photonics 7 486Google Scholar

    [166]

    Gao W X, Brenan R, Hu Y, Wuttig M, Yuan G L, Quandt E, Ren S Q 2018 Mater. Today 21 771Google Scholar

    [167]

    Chu Y H 2017 npj Quantum Mater. 2 67Google Scholar

    [168]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, AlcocerM J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [169]

    Ding R, Zhang X L, Sun X. W 2017 Adv. Funct. Mater. 27 1702207Google Scholar

    [170]

    Leguy A M A, Frost J M, McMahon A P, Sakai V G, Kockelmann W, Law C, Li X, Foglia F, Walsh A, O’Regan B C, Nelson J, Cabral J T, Barnes P R F 2015 Nat. Commun. 6 7124Google Scholar

    [171]

    Kutes Y, Ye L H, Zhou Y Y, Pang S P, Huey B D, Padture N P 2014 J. Phys. Chem. Lett. 5 3335Google Scholar

    [172]

    Coll M, Gomez A, Mas-Marza E, Almora O, Garcia-Belmonte G, Campoy-Quiles M Bisquert J 2015 J. Phys. Chem. Lett. 6 1408Google Scholar

    [173]

    Kim H S, Kim S K, Kim B J, Shin K S, Gupta M K, Jung H S, S W Kim, Park N G 2015 J. Phys. Chem. Lett. 6 1729Google Scholar

    [174]

    Rakita Y, Bar-Elli O, Meirzadeh E, Kaslasi H, Peleg Y, Hodes G, Lubomirsky I, Oron D, Ehre D, Cahen D 2017 Proc.Natl Acad. Sci. U. S. A. 114 E5504Google Scholar

    [175]

    Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323Google Scholar

    [176]

    Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E, Ashraful I, Grätzel M, Han L 2015 Science 350 944Google Scholar

    [177]

    Kaltenbrunner M, Adam G, Głowacki E D, Drack M, Schwödiauer R, Leonat L, Apaydin D H, Groiss H, Scharber M C, White M S, Sariciftci N S, Bauer S 2015 Nat. Mater. 14 1032Google Scholar

    [178]

    Greeley J, Jaramillo T F, Bonde J, Chorkendorff I B, Nørskov J K 2006 Nat. Mater. 5 909Google Scholar

    [179]

    Jaramillo T F, Kristina P J, Bonde J, Nielsen J H, Horch S, Chorkendorff I 2007 Science 317 100Google Scholar

    [180]

    McKone J R, Sadtler B F, Werlang C A, Lexis N S, Gray H B 2013 ACS Catal. 3 166Google Scholar

    [181]

    Smith R D L, Prevot M S, Fagan R D, Zhang Z P, Sedach P A, Siu M K J, Trudel S, Berlinguette C P 2013 Science 340 60Google Scholar

    [182]

    Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater 5 1500963Google Scholar

    [183]

    Da Peimei M, Cha M Y, Sun L, Wu Y Z, Wang Z S, Zheng G F 2015 Nano Lett. 15 3452Google Scholar

    [184]

    Fu K, Huang J Z, Yao N N, Deng X L, Xu X J, Li L 2016 RSC Adv. 6 57695Google Scholar

    [185]

    Rehman S, Ullah R, Butt A M, Gohar N D 2009 J. Hazard. Mater. 170 560Google Scholar

    [186]

    Asahi R, Morikawa T, Okwaki T, Aoki K, Taga Y 2001 Science 293 269Google Scholar

  • 图 1  (a) ABX3型钙钛矿铁电材料结构图; (b) P-E电滞回线; (c) 铁电光催化、热释电催化、压电催化机制及其应用

    Fig. 1.  (a) Structure diagram of ABX3 type perovskite ferroelectric material; (b) P-E hysteresis loop. (c) photocatalysis, piezocatalysis and pyrocatalysis of a ferroelectric semiconductor and their application

    图 2  (a) 光催化分解水的基本原理; (b) 光催化产氢、析氧反应步骤[33]

    Fig. 2.  (a) Basic principle of photocatalytic water-splitting process; (b) photocatalytic reaction steps for hydrogen and oxygen production[33]

    图 3  (a), (b) 对BiFeO3薄膜进行+8 V和–8 V 极化后的能带结构示意图; (c) 极化之前和+8 V和–8 V极化之后BiFeO3电极测量的外量子效率; (d) 不同铁电极化状态的BiFeO3工作电极的光电流与电势曲线[24]

    Fig. 3.  Energy band structure diagram of the BiFeO3 thin film after (a) +8 V and (b) –8 V poling; (c) external quantum yield spectra of BiFeO3 film before poling and after +8 V and –8 V poling; (d) photocurrent–potential characteristics of the photoelectrodes with different polarization states[24]

    图 4  (a) 三种50 nm厚外延BiFeO3薄膜光阳极的Mott-Schottky曲线, 相对于Ag/AgCl参比电极的平带电势由曲线斜率与横轴交点决定; (b) 400—800 nm入射光波长范围内的BiFeO3薄膜的吸光度; (c) 三种外延BiFeO3薄膜光阳极的能带位置; (d) BiFeO3薄膜光阳极的电化学阻抗谱[77]

    Fig. 4.  (a) Mott-Schottky plots for the 50-nm-thick epitaxial BiFeO3 thin-film photoanodes with different crystallographic orientations, where the flat-band potentials are obtained from the intercepts of the extrapolated lines; (b) absorbance measurements for these three BiFeO3 thin films with incident light at 400−800 nm wavelength; (c) band positions for the epitaxial BiFeO3 thin-film photoanodes; (d) electrochemical impedance spectroscopy spectra of the BiFeO3 thin-film photoanodes[77]

    图 5  光催化反应过程中BiFeO3薄膜作为光阳极的能带图 (a) 不同极化状态下, BiFeO3薄膜能带结构的改变; (b) (111)pc BiFeO3薄膜作为光阳极的光电流密度-电势曲线; (c) 在电势为0 V情况下(001)pc和(111)pc BiFeO3薄膜光阳极的光电流密度-时间曲线[61]

    Fig. 5.  Energy band diagrams for BiFeO3 photoanodes in PEC water splitting cells: (a) Changes in the band structure of BiFeO3 thin films under different polarization states; (b) linear sweep voltammetry of 50-nm-thick (111)pc BiFeO3 thin-film photoanodes in different polarization states; (c) photocurrent density versus time curves for (001)pc and (111)pc BiFeO3 thin-film photoanodes with different polarization states under zero bias (0 V vs. Ag/AgCl)[61]

    图 6  (a) BiFeO3@Sn:TiO2生长机制示意图; (b) TiO2, Sn:TiO2与Sn:TiO2@BiFeO3作为光阳极时的光电流密度; 铁电极化分别指向(c) 电解液和(d) Sn:TiO2时, Sn:TiO2@BiFeO3的能带示意图[89]

    Fig. 6.  (a) Schematic representation for the growth mechanism of Sn:TiO2@BiFeO3 nano rods; (b) photocatalysis performance of TiO2, Sn:TiO2 and BiFeO3@Sn:TiO2 nano rods. Schematic electronic band diagram of (c) positive poling BiFeO3 and (d) negative poling BiFeO3[89]

    图 7  (a) BiVO4/BiFeO3光阳极的电子能级及结构示意图; (b) BiVO4/Co-Pi, BiVO4和BiVO4/BiFeO3三种结构的光电流密度-电势曲线; (c)不同铁电极化状态下BiVO4/BiFeO3光阳极的光电流密度-电势曲线; (d) 在工作电极的电势为0.6 V时, 三种结构的光电流密度-时间的曲线[102]

    Fig. 7.  (a) Electron energy levels of BiVO4/BiFeO3 photoanode and the structural representation; (b) the photocurrent density curves of three different structures of BiVO4/Co-Pi, BiVO4 and BiVO4/BiFeO3; (c) photocurrent density versus potential curves at three statuses of ferroelectric polarization; (d) long-term photostability of three photoanodes at 0.6 V (V vs. Ag/AgCl)[102]

    图 8  SrTiO3/CaRuO3/Bi2FeCrO6样品在Bi2FeCrO6 的(a)初始极化状态、(b) +P (即Pup)、(c) –P(即Pdown)时的结构示意图和在光阴极时Bi2FeCrO6薄膜的光电流-电势(vs. Ag/AgCl)曲线图[15]; (d) 在光阳极时SrTiO3/SrRuO3/Bi2FeCrO6/NiO异质结的光电催化示意图和(e)其光电流-电势曲线[62]

    Fig. 8.  Schematic illumination and variations of the photocurrent density with applied voltage (vs. Ag/AgCl) in 1 mol/L Na2SO4 at pH 6.8 under chopped simulated sunlight illumination (AM1.5G) of SrTiO3/CaRuO3/Bi2FeCrO6 sample: (a) Before, (b) after negative (Pup, –25 V) and (c) and positive poling (Pdown, 25 V)[15]; (d) schematic diagram of the experimental setup and (e) photocurent versus potential (vs. RHE) curves of SrTiO3/SrRuO3/Bi2FeCrO6/NiO[62]

    图 9  (a) BaTiO3铁电材料的能带结构及其退极化场EP分离光生电子-空穴对的示意图; (b) 太阳光照射下不同催化剂对罗丹明B的光致脱色特性[43]; (c) Glass/500 nm-BaTiO3/67 nm-MoO3异质结的能带结构和载流子分离示意图; (d) 该异质结在紫外可见光和可见光分别照射下分离罗丹明B的效果图[44]; (e) 可见光(λ > 400 nm)照射下BaTiO3-CdS复合材料的光生空穴-电子对分离、载流子迁移以及光催化产生氢气的示意图; (f) 原始CdS, 纯BaTiO3和BaTiO3-CdS (wt 20%)复合材料的光电流-时间曲线(电极0.5 cm × 0.5 cm)[118]

    Fig. 9.  (a) Schematic of BaTiO3-Ag composites with the effect of free carrier reorganization on band structure and photoexcited carriers, and (b) photodecolorization profiles of RhB with different catalysts under solar simulator[43]; (c) schematic representation of the 500 nm-BaTiO3/67 nm-MoO3 heterostructure on glass substrate, and (d) its photodecolorization profiles of RhB under UV-visible and visible light (sun light)[44]; (e) schematic of photoinduced hole and electron migration in BaTiO3-CdS composites and photocatalytic hydrogen process under visible light (λ > 400 nm), and (f) its photoelectrochemical properties of pristine CdS, pure BaTiO3 and BaTiO3-CdS (wt 20%) composite[118]

    图 10  (a) TiO2@BaTiO3 (BTO)纳米线的能带结构示意图; (b) 铁电极化后TiO2@BaTiO3纳米线光阳极的光电流密度-电势曲线[5]; (c) 在FTO玻璃上制备TiO2@ BTO/Ag2O纳米棒的示意图; (d) 在标准太阳光照射下, TiO2, TiO2@BTO, 初始TiO2@BTO/Ag2O, 铁电极化指向TiO2的TiO2@BTO/Ag2O四种纳米棒阵列的光电流-电势曲线[66]

    Fig. 10.  (a) Energy band diagram of nanowire photocatalytic reaction of TiO2@BaTiO3 nanowires; (b) photocurrent density versus potential curve of TiO2@BaTiO3 nanowires at three polarization statuses[5]; (c) scheme of the fabrication process of TiO2@BTO/Ag2O nanorod array, and (d) photocurrent-potential curves in the dark and under Xe lamp irradiation of the different photoanodes[66]

    图 11  (a) 铁电极化垂直于表面时, (001) PbTiO3单晶单畴纳米片在200—350 nm不同厚度时的能带图; (b) 通过开尔文探针力显微镜测量的表面光伏电压SPV[124]; (c) (001) PbTiO3单晶纳米片、TiO2粉体、铁电极化指向或背向TiO2层或没有特定指向情况下的PbTiO3/TiO2纳米片的光催化分解甲基蓝的速率常数Kobs (即KMB); (d) 光催化产氢速率[46]

    Fig. 11.  (a) Schematic of energy band in thinner (001) PbTiO3 (PTO) with smaller built-in voltages (ΔV) and thicker nanosheet with larger ΔV; (b) correlation between surface photovoltaic value measured by Kelvin probe force microscopy and nanosheet thickness[124]; (c) the reaction rate of blank control and photodegradation of MB under visible light (λ ≥ 420 nm) irradiation with (001) PTO, TiO2 and heterostructured TiO2/PTO composites; (d) H2 evolution rate of water splitting under visible light (λ ≥ 420 nm) irradiation[46]

    图 12  (a) 铁电极化指向底电极时FTO/NaNbO3光阳极的能带结构示意图; (b) 在0.5 mol/L Na2SO4电解质中以100 mW/cm2的紫外-可见光线照射下, 不同极化条件下光阳极的电流-电位曲线[64]; (c) 铁电极化指向底电极时PVDF/Cu/NaNbO3/PVDF的能带结构示意图; (d) 不同极化条件下NaNbO3/PVDF薄膜的光电流密度-时间曲线[126]

    Fig. 12.  (a) Band bending of FTO/NaNbO3 for negative polarized; (b) current-potential curves of photoanodes with different polarization conditions[64]; (c) band bending of PVDF/Cu/PVDF-NaNbO3 for negative polarized; (d) current density versus time curves of NaNbO3/PVDF films with different polarization conditions[126]

    图 13  (a) 铁电、热电和压电材料中自由载流子重组和光激发载流子分离的示意图[140]; (b) 在紫外光照射、超声振动分别和同时存在时, BCT-0和BCT-0.2降解甲基橙染料的Kobs对比[150]; (c) 在氙灯可见光、超时振动分别和同时存在时, KNbO3纳米管(NC)和纳米片(NS)的降解甲基橙染料的Kobs(即k)对比[50]; (d) ZnSnO3–x 纳米线在超声振动和氙灯光照情况下降解罗丹明B染料和(e)分解水产氢的对比图[52]

    Fig. 13.  (a) Schematic understanding of free carrier reorganization and photo-excited carrier separation in ferroelectric, pyroelectric and piezoelectric materials under the influence of ferroelectric, pyroelectric and piezoelectric effects respectively[140]; (b) degradation reaction kinetic rate constants (Kobs) of methyl orange over BCT-0 and BCT-0.2 under UV light, ultrasonic vibration and the simultaneous assistance of ultrasonic vibration and UV light[150]; (c) Kobs (i.e. k) of the RhB solution over the KNbO3 nanosheet (NS) and nanotube (NC) under different conditions[50]; (d) the RhB dye solution degradation activity and (e) the amount of hydrogen evolution of ZnSnO3–x nanowires as a function of time under applying light and ultrasonic vibration simultaneously[52]

    图 14  (a) 半导体催化剂中光照产生电子-空穴对, 电子空穴对分离, 空穴氧化H2O并产生氧气, 电子还原CO2和H2O并产生燃料; (b) 几种半导体光催化剂的导带、价带电势和带隙, 参与CO2还原的化合物在pH=7时的氧化还原电势[158]

    Fig. 14.  (a) Schematic illustration of photoinduced generation of an electron-hole pair in semiconductor that transfers to the surface for CO2 photoredox; (b) conduction band, valence band potentials, and band gap energies of various semiconductor photocatalysts relative to the redox potentials at pH 7 of compounds involved in CO2 reduction[158].

    图 15  (a) SrBi4Ti4O15的铁电极化增强光生电子-空穴对分离效率的示意图; (b) SrBi4Ti4O15的能级图; (c) SrBi4Ti4O15, Bi4Ti3O12, P25和BiOBr通过光催化产生CH4和CO的速率; (d) 不同退火温度的SrBi4Ti4O15通过光催化生产CH4的数量-时间曲线[164]

    Fig. 15.  (a) Schematic diagram of polarization-field enhanced separation of photogenerated charge carriers; (b) diagram for the band energy levels of SrBi4Ti4O15; (c) the corresponding rates over SrBi4Ti4O15, Bi4Ti3O12, P25 and BiOBr; (d) CH4 yield curves of SrBi4Ti4O15 with different annealing temperatures[164]

    图 16  (a) CH3NH3PbI3晶体在204 K时的介电常数实部εre和虚部εim与外电压的曲线; (b) 通过对εim进行积分得到的P-E电滞回线[174]

    Fig. 16.  (a) Dielectric response at 204 K of a CH3NH3PbI3 crystal, showing that εre dominates the dielectric response; (b) P-E hysteresis loop obtained from integration of εim over applied electric field[174]

    图 17  (a) CH3NH3PbI3薄膜光伏电池和串联催化装置的宏观结构示意图; (b) 材料能带-电荷输运示意图; (c)钙钛矿串联电池两个NiFe-LDH电极之间的光电流密度-电压曲线; (d) 光伏电池串联催化分解水装置的光电流密度-时间曲线[71]

    Fig. 17.  (a) Schematic diagram of the water-splitting device based on CH3NH3PbI3 film; (b) generalized energy schematic of the perovskite tandem cell for water splitting; (c) J-V curves of the perovskite tandem cell, and the NiFe/Ni foam electrodes in a two-electrode configuration; (d) current density-time curve of the integrated water-splitting device[71]

    图 18  (a) FTO/m-TiO2/CH3NH3PbI3/Spiro-MeOTAD/Au/Catalyst光催化结构的集成光电解装置示意图; (b) 在模拟光照下Au表面含Ni催化剂(红色曲线)和不含Ni催化剂(蓝色曲线)时钙钛矿光阳极的光电流-外电势曲线[68]; (c) FTO/PEDOT:PSS/CH3NH3PbI3/PCBM/PEIE/Ag的材料能带和功函数匹配图; (d) 光催化器件在开关光循环条件下的I-V[69]

    Fig. 18.  (a) Schematic diagram of FTO/m-TiO2/CH3NH3PbI3/Spiro-MeOTAD/Au/Catalyst integrated photoelectrolysis device with perovskite photoelectrode; (b) photocurrent verus potential comparison diagram of perovskite photoanode with Ni catalyst and Ni catalyst under simulated light[68]; (c) energy and work function matching of FTO/PEDOT:PSS/CH3NH3PbI3/PCBM/PEIE/Ag; (d) photocurrent verus potential diagram of photocatalytic device switching[69]

    表 1  部分压电和铁电材料的光催化降解甲基橙染料或CO2的性能比较

    Table 1.  Photocatalytic degradation of organic compounds using a variety of catalytic methods.

    材料及结构
    (铁电材料为粗体)
    铁电带隙/eV激励源催化降解物催化活性污染性稳定性(性能/时间)文献
    BiFeO3纳米粉体2.18紫外可见光甲基橙8 h降解90%[14]
    FTO玻璃/BiVO4/BiFeO3/CuInS22.1—2.7可见光对硝基苯酚Kobs = 0.02 min–1 相对稳定/5次循环[56]
    NaNbO3纳米棒3.3光+超声振动甲基蓝98%/3次循环[42]
    BaTiO3@Ag纳米颗粒3.2罗丹明BKobs = 0.087 min–1 [43]
    BaTiO3/MoO33.2紫外-可见光罗丹明B60 min降解86%95%/5次循环[44]
    BaTiO3/Ag2O纳米棒3.2紫外光+ 超声振动罗丹明B
    (c = 15 mg·L–1 )
    Kobs = 0.031 min–1 50%/5次循环[18]
    BaTiO3@非晶BaTiO3–x3.2可见光甲基蓝5 h降解62.4%97%/5次循环[45]
    PbTiO3/TiO2纳米片3.6氙灯可见光甲基蓝Kobs = 0.057 min–1
    132.6 μmol·h–1 ·g–1 产H2
    [46]
    KNbO3/g-C3N43.28氙灯可见光180 μmol·h–1 ·g–1 产H295%/4次循环[47]
    {001} Bi3TiNbO9纳米片3.3氙灯可见光342.6 μmol·h–1 ·g–1 产H2[48]
    KNbO3颗粒3.28罗丹明BKobs = 0.317 min–1 [49]
    KNbO3纳米片3.07可见光+超声振动罗丹明BKobs = 0.022 min–1 2 h降解92.6%[50]
    FTO玻璃/ZnSnO3纳米线3.7光+压力甲基蓝Kobs = 0.007 min–1 90%/1 h[51]
    FTO/ZnSnO3–x纳米线2.4—3.7光、超声振动、
    光和超声振动
    3562, 3453,
    3882 μmol·h–1 ·g–1 产H2
    在振动下相对稳定/7 h[52]
    FTO/Zn1–xSnO3 纳米线2.4—3.7紫外光+振动甲基蓝Kobs = 0.015 min–1 [53]
    PZT@TiO2核壳结构3.6光+搅拌罗丹明B80 min完全降解[54]
    BiOI-BaTiO3纳米粒子3.2可见光甲基橙90 min降解95.4%[55]
    ZnO纳米线压电3.37光+摇摆甲基蓝Kobs = 0.025 min–1 99%/3次循环[57]
    ZnO纳米片/TiO2纳米颗粒压电3.37可见光甲基橙Kobs = 0.038 min–1 相对稳定/11 h[58]
    Ag-ZnO纳米线压电3.37光+弯折罗丹明BKobs = 0.052 min–1 90%/8次循环[59]
    下载: 导出CSV

    表 2  近年部分铁电材料光电催化分解水的研究进展(这里ITO, FTO, SrTiO3, Nb-SrTiO3和glass是薄膜基片, PCBM是[6,6]-苯基C61-丁酸甲酯, PEIE是乙氧基化聚乙烯亚胺; PEDOT:PSS是聚苯乙烯磺酸盐(3, 4-乙撑二氧噻吩))

    Table 2.  Photoelectrochemical water splitting of ferroelectric materials in recent years, where ITO, FTO, SrTiO3, Nb-SrTiO3 and glass are substrate of films, PCBM is [6,6]-phenyl-C61-butyric acid methyl ester, PEIE is ethoxylated polyethylenimine, PEDOT:PSS is poly(3, 4-ethylenedioxythiophene) polystyrene sulfonate and FM is In0.51Bi0.325Sn0.165 as protective layer

    材料和结构
    (铁电材料为粗体)
    铁电PCE/%带隙/eV电解液光源工作电极电势光电流密度/
    mA·cm–2
    污染性稳定性
    (性能/时间)
    文献
    ITO/BiFeO3/Au2.16—2.70.1 mol/L KClAM1.5G0 V vs. Ag/AgCl0.05[60]
    SrTiO3/SrRuO3/(111)BiFeO32.16—2.70.5 mol/L Na2SO4AM1.5G0 V vs. Ag/AgCl0.08100%/700 s[61]
    SrTiO3/CaRuO3/(111) Bi2FeCrO61.9—2.11 mol/L Na2SO4AM1.5G0 V vs. Ag/AgCl–2.02[15]
    SrTiO3/SrRuO3/Bi2FeCrO6/ NiO1.8— –2.71 mol/L Na2SO4AM1.5G1.2 V vs. RHE0.995%/7 h[62]
    TiO2@PbTiO3 核壳结构3.6氙灯100 mW·cm–2132 μmol·g–1 H2[63]
    FTO/NaNbO33.370.5 mol/L Na2SO4AM1.5G1 V vs. Ag/AgCl0.51[64]
    ITO/KNbO3纳米片2.860.5 mol/L Na2SO4AM1.5G0 V vs. Ag/AgCl0.82[50]
    (001) LiNbO3单晶3.26mol/LK3PO4AM1.5G1.23 V vs. RHE0.15[65]
    FTO/TiO2@BaTiO3/Ag2O3.21 mol/LNaOHAM1.5G0.8 V vs. Ag/AgCl1.897%/1 h[66]
    FTO/TiO2@SrTiO3
    (10 nm四方铁电相)
    3.21 mol/LNaOHAM1.5G1.23 V vs. RHE1.43[67]
    Glass/FTO/m-TiO2/CH3NH3PbI3/
    Spiro-MeOTAD/Au/Ni
    14.41.5AM1.5G1.0 V vs. SHE17.466%/1 h[68]
    FTO/PEDOT:PSS/CH3NH3PbI3/
    PCBM/PEIE/Ag/FM
    7.71.5AM1.5G1.2 V vs. RHE15.080%/1 h[69]
    ITO/NiO/CH3NH3PbI3/
    PCBM/Ag/Ti/Pt
    16.11.50.5 mol/L H2SO4AM1.5G1.2 V vs. RHE1870%/12 h[70]
    CH3NH3PbI3 solar cells,
    a cell for H2O splitting
    15.71.5AM1.5G1075%/10 h[71]
    FTO/BiVO4/black-phosphorene/
    NiOOH
    2.4—2.50.5 mol/L KH2PO4 K2HPO4AM1.5G1.23 V vs. RHE4.4899%/60 h[72]
    FTO/H:TiO21.633.21 mol/LNaOHAM1.5G–0.6 V vs. Ag/AgCl1.9794%/28 h[73]
    下载: 导出CSV
  • [1]

    Fujishima A, Honda K 1972 Nature 238 37Google Scholar

    [2]

    Morrison S R, Freund T 1967 J. Chem. Phys. 47 1543Google Scholar

    [3]

    Ctibor P, Ageorges H, Stengl V, Murafa N, Pis L, Zahoranova T, Nehasil V, Pala Z 2011 Ceram. Int. 37 2561Google Scholar

    [4]

    Yu Y H, Wang X D 2018 Adv. Mater. 30 1800154Google Scholar

    [5]

    Yang W G, Yu Y H, Starr M B, Yin X, Li Z D, Kvit A, Wang S F, Zhao P, Wang X D 2015 Nano Lett. 15 7574Google Scholar

    [6]

    He H C, Liao A Z, Guo W L, Luo W J, Zhou Y, Zou Z G 2019 Nano Today 28 100763Google Scholar

    [7]

    Ren P R, Fan H Q, Wang X 2012 Catal. Commun. 25 32Google Scholar

    [8]

    Liu S, Liu X P, Chen Y S, Jiang R Y 2010 J Alloy. Compd. 506 877Google Scholar

    [9]

    Singh A P, Kumari S, Shrivastav R, Dass S, Satsangi V R 2008 Int. J Hydrogen. Energ. 33 5363Google Scholar

    [10]

    De Wolf S, Holovsky J, Moon S J, Loper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar

    [11]

    Zhang G, Liu G, Wang L Z, Irvine J T S 2016 Chem. Soc. Rev. 45 5951Google Scholar

    [12]

    Miyauchi M, Takashio M, Tobimatsu H 2004 Langmuir 20 232Google Scholar

    [13]

    Liu Q, Zhou Y, You L, Wang J L, Shen M R, Fang L 2016 Appl. Phys. Lett. 108 022902Google Scholar

    [14]

    Cho C M, Noh J H, Cho I S, An J S, Hong K S, Kim J Y 2008 J. Am. Ceram. Soc. 91 3753Google Scholar

    [15]

    Li S, AlOtaibi B, Huang W, Mi Z, Serpone N, Nechach R, Rosei F 2015 Small 11 4018Google Scholar

    [16]

    Yuan Y B, Reece T J, Sharma P, Poddar S, Ducharme S, Gruverman A, Yang Y, Huang J H 2011 Nat. Mater. 10 296Google Scholar

    [17]

    Hoffman J, Pan X, Reiner J W, Walker F J, Han J P, Ahn C H, Ma T P 2010 Adv. Mater. 22 2957Google Scholar

    [18]

    Li H D, Sang Y H, Chang S J, Huang X, Zhang Y, Yang R S, Jiang H D, Liu H, Wang Z L 2015 Nano Lett. 15 2372Google Scholar

    [19]

    Shi J, Zhao P, Wang X D 2013 Adv. Mater. 25 916Google Scholar

    [20]

    Hu W J, Wang Z H, Yu W L, Wu T 2016 Nat. Commun. 7 10808Google Scholar

    [21]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys.Sin. 69 017301Google Scholar

    [22]

    Liu X P, Xing J C, Wang W D, Shan Z C, Xu F F, Huang F Q 2007 J. Phys. Chem. C 111-112 18288

    [23]

    Chen S F, Lei J, Tang W M, Fu X L 2013 Dalton Trans. 42 10759Google Scholar

    [24]

    Li S, Lin Y H, Zhang B P, Li J F, Nan C W 2009 J. Appl. Phys. 105 054310Google Scholar

    [25]

    Gao H, Yang Y X, Wang Y J, Chen L, Wang J L, Yuan G L, Liu J M 2019 ACS Appl. Mater. Interfaces 11 35169Google Scholar

    [26]

    Gao W X, Zhu Y, Wang Y J, Yuan G L, Liu J M 2020 J. Materiomics 6 1Google Scholar

    [27]

    Pang H Z, Zhang F Y, Zeng M, Gao X S, Qin M H, Lu X B, Gao J W, Dai J Y, Li Q L 2016 npj Quantum Mater. 1 16015Google Scholar

    [28]

    Espinosa H D, Bernal R A, Jolandan M M 2012 Adv. Mater. 34 4656Google Scholar

    [29]

    Haertling G H 2004 J Am. Ceram. Soc. 82 2366Google Scholar

    [30]

    Scott J F 2000 J. Appl. Phys. 88 6092Google Scholar

    [31]

    Wang M Y, Wang B, Huang F, Lin Z Q 2019 Angew. Chem. Int. Ed. 58 7526Google Scholar

    [32]

    Gao P, Grätzel M, Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448

    [33]

    Wang W, Tadé M O, Shao Z P 2015 Chem. Soc. Rev. 44 5371Google Scholar

    [34]

    Fang L, You L, Liu J M 2018 Ferroelectrics in Photocatalysis (Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA) pp2—12

    [35]

    Zhao H L, Pan F P, Li Y 2017 J. Materiomics 3 17Google Scholar

    [36]

    Shen S H, Kronawitter C, Kiriakidis G 2017 J. Materiomics 3 1Google Scholar

    [37]

    Zhang Z J, Zhao A D, Wang F M, Ren J S, Qu X G 2016 Chem. Commun. 52 5550Google Scholar

    [38]

    Maeda K, Domen K 2007 J. Phys. Chem. C 111 7851Google Scholar

    [39]

    Nakata K, Fujishima A 2012 J. Photoch Photobio C 13 169Google Scholar

    [40]

    Litter M I, Navio J A 1996 J. Photoch. Photobio. A 98 171

    [41]

    Choi W Y, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669Google Scholar

    [42]

    Singh S, Khare N 2017 Nano Energy 38 335Google Scholar

    [43]

    Cui Y F, Briscoe J, Dunn S 2013 Chem. Mater. 25 4215Google Scholar

    [44]

    Alex K V, Prabhakaran A, Jayakrishnan A R, Kamakshi K, Silva J P B, Sekhar K C 2019 ACS Appl. Mater. Interfaces 11 40114Google Scholar

    [45]

    Li J, Zhang G H, Han S F, Cao J W, Duan L H, Zeng T 2018 Chem. Commun. 54 723Google Scholar

    [46]

    Li W, Wang F, Li M, Chen X, Ren Z H, Tian H, Li X, Lu Y H 2018 Nano Energy 45 304Google Scholar

    [47]

    Yu J X, Chen Z Q, Wang Y, Ma Y Y, Feng Z, Lin H J, Wu Y, Zhao L H, He Y M 2018 J. Mater. Sci. 53 7453Google Scholar

    [48]

    Yin X F, Li X N, Liu H, Gu W, Zou W, Zhu L Y, Fu Z P, Lu Y L 2018 Nano Energy 49 489Google Scholar

    [49]

    Fu Q, Wang X J, Li C Y, Sui Y, Han Y P, Lv Z, Song B, Xu P 2016 RSC Adv. 6 108883Google Scholar

    [50]

    Yu D F, Liu Z H, Zhang J M, Li S, Zhao Z C, Zhu L F, Liu W S, Lin Y H, Liu H, Zhang Z T 2019 Nano Energy 58 695Google Scholar

    [51]

    Lo M K, Lee S Y, Chang K S 2015 J. Phys. Chem. C 119 5218

    [52]

    Wang Y C, Wu J M 2019 Adv. Funct. Mater. 30 1907619

    [53]

    Wang Y T, Chang K S 2016 J. Am. Ceram. Soc. 99 2593Google Scholar

    [54]

    Feng Y W, Li H, Ling L L, Yan S, Pan D L, Ge H, Li H X, Bian Z F 2018 Environ. Sci. Technol. 52 7842Google Scholar

    [55]

    Huang H W, Tu S C, Du X, Zhang Y H 2018 J. Colloid Interface Sci. 509 113Google Scholar

    [56]

    Li H F, Quan X, Chen S, Yu H T 2017 Appl. Catal. B 209 591Google Scholar

    [57]

    Xue X, Zang W L, Deng P, Wang Q, Xing L L, Zhang Y, Wang Z L 2015 Nano Energy 13 414Google Scholar

    [58]

    Wang L F, Liu S H, Wang Z, Zhou Y L, Qin Y, Wang Z L 2016 ACS Nano 10 2636Google Scholar

    [59]

    Chang J H, Lin H N 2014 Mater. Lett. 132 134Google Scholar

    [60]

    Kim T H, Baek S H, Yang S M, Kim Y S, Jeon B C, Lee D, Chung J S, Eom C B, Yoon J G, Noh T W 2011 Appl. Phys. Lett. 99 012905Google Scholar

    [61]

    Song J, Kim T L, Lee J, Cho S Y, Cha J, Jeong S Y, An H, Kim W S, Jung Y S, Park J Y, Jung G Y, Kim D Y, Jo J Y, Bu S D, Jang H W, Lee S 2018 Nano Res. 11 642Google Scholar

    [62]

    Huang W, Harnagea C, Tong X, Benetti D, Sun S H, Chaker M, Rosei F, Nechache R 2019 ACS Appl. Mater. Interfaces 11 13185Google Scholar

    [63]

    Wang Y S, Dong W, Zheng F G, Fang L, Shen M R 2015 Energy Environ. Focus 4 95Google Scholar

    [64]

    Singh S, Khare N 2017 Appl. Phys. Lett. 110 152902Google Scholar

    [65]

    Fu H W, Song Y, Wu Y Q, Huang H T, Fan G Z, Xu J, Li Z S, Zou Z G 2018 Appl. Phys. Lett. 112 073901Google Scholar

    [66]

    Liu Z R, Wang L W, Yu X, Zhang J, Yang R Q, Zhang X D, Ji Y C, Wu M Q, Deng L, Li L, Wang Z L 2019 Adv. Funct. Mater. 29 1807279Google Scholar

    [67]

    Wu F, Yu Y H, Yang H, German L N, Li Z, Chen J G, Yang W G, Huang L, Shi W M, Wang L J, Wang X D 2017 Adv. Mater. 29 1701432Google Scholar

    [68]

    Hoang M T, Pham N D, Han J H, Gardner J M, Oh I 2016 ACS Appl. Mater. Interfaces 8 11904Google Scholar

    [69]

    Crespo-Quesada M, Pazos-Quton L M, Warnan J, Kuehnel M F, Friend R H, Reisner E 2016 Nat. Commun. 7 12555Google Scholar

    [70]

    Zhang H F, Yang Z, Yu W, Wang H, Ma W G, Zong X, Li C 2018 Adv. Energy Mater. 8 1800795Google Scholar

    [71]

    Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M K, Park N G, Tilley S D, Fan H J, Grätzel M 2014 Science 345 1593Google Scholar

    [72]

    Zhang K, Jin B J, Park C, Cho Y, Song X F, Shi X J, Zhang S L, Kim W, Zeng H B, Park J H 2019 Nat. Commun. 10 2001Google Scholar

    [73]

    Wang G M, Wang H Y, Ling Y C, Tang Y C, Yang X Y, Fitzmorris R C, Wang C C, Zhang J Z, Li Y 2011 Nano Lett. 11 3026Google Scholar

    [74]

    Deng X, Song C, Tong Y L, Yuan G L, Gao F, Liu D Q, Zhang S T 2018 Phys. Chem. Chem. Phys. 20 3648Google Scholar

    [75]

    Ji W, Yao K, Lim Y F, Liang Y C, Suwardi A 2013 Appl. Phys. Lett. 103 062901Google Scholar

    [76]

    Huang Y L, Chang W S, Van C N, Liu H J, Tsai K A, Chen J W, Kuo H H, Tzeng W Y, Chen Y C, Wu C L, Luo C W, Hsu Y J, Chu Y H 2016 Nanoscale 8 15795Google Scholar

    [77]

    Cao D W, Wang Z J, Nasori, Wen L Y, Mi Y, Lei Y 2014 Angew. Chem. Int. Ed. 53 11027Google Scholar

    [78]

    Wu J G, Wang J 2009 J. Appl. Phys. 106 104111Google Scholar

    [79]

    Béa H, Bibes M, Zhu X H, Fusil1 S, Bouzehouane K, Petit S, Kreisel J, Barthélémy A 2008 Appl. Phys. Lett. 93 072901Google Scholar

    [80]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719Google Scholar

    [81]

    Singh S K, Kim Y K, Funakubo H, Ishiwara H 2006 Appl. Phys. Lett. 88 162904Google Scholar

    [82]

    Chen Z H, He L, Zhang F, Jiang J, Meng J W, Zhao B Y, Jiang A Q 2013 J. Appl. Phys. 113 184106Google Scholar

    [83]

    Zhu J, Luo W B, Li Y R 2008 Appl. Surf. Sci. 255 3466Google Scholar

    [84]

    Sone K, Naganuma H, Miyazaki T, Nakajima T, Okamura S 2010 Jpn. J. Appl. Phys. 49 09MB03Google Scholar

    [85]

    Baek S H, Folkman C M, Park J W, Lee S, Bark C W, Tybell T, Eom C B 2011 Adv. Mater. 23 1621Google Scholar

    [86]

    Das R R, Kim D M, Baek S H, Eom C B, Zavaliche F, Yang S Y, Ramesh R, Chen Y B, Pan X Q, Ke X, Rzchowski M S 2006 Appl. Phys. Lett. 88 242904Google Scholar

    [87]

    Wu H, Tan H L, Toe C Y, Scott J, Wang L Z, Amal R, Ng Y H 2019 Adv. Mater. 32 1904717

    [88]

    Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q X, Santori E A, Lewis N S 2010 Chem. Rev. 110 6446Google Scholar

    [89]

    Huang J, Wang Y, Liu X Q, Li Y C, Hu X Q, He B, Shu Z, Li Z, Zhao Y L 2019 Nano Energy 59 33Google Scholar

    [90]

    Ng Y H, Lwase A, Kudo A, Amal R 2010 J. Phys. Chem. Lett. 1 2607Google Scholar

    [91]

    Sivula K, van de Krol R 2016 Nat. Rev. Mater. 1 15010Google Scholar

    [92]

    Luo W J, Yang Z S, Li Z S, Zhang J Y, Liu J G, Zhao Z Y, Wang Z Q, Yan S C, Yu T, Zou Z G 2011 Energy Environ. Sci. 4 4046Google Scholar

    [93]

    Su J Y, Bai Z W, Huang B L, Quan X, Chen G H 2016 Nano Energy 24 148Google Scholar

    [94]

    Shi X, Zhang K, Shin K, Ma M, Kwon J, Choi I T, Kim J K, Kim H K, Wang D H, Park J H 2015 Nano Energy 13 182Google Scholar

    [95]

    Zhou L, Wang W Z, Liu S W, Zhang L H, Xu H L, Zhu W 2006 J. Mol. Catal. A:Chem. 252 120Google Scholar

    [96]

    Gratzel M 2001 Nature 414 338Google Scholar

    [97]

    Shi X J, Choi I Y, Zhang K, Kwon J, Kim D Y, Lee J K, Oh S H, Kim J K, Park J H 2014 Nat. Commun. 5 4775Google Scholar

    [98]

    Parmar K P S, Kang H J, Bist A, Dua P, Jang J S, Lee J S 2012 ChemSusChem 5 1926Google Scholar

    [99]

    Murcia-López S, Fàbrega C, Monllor-Satoca D, Hernández-Alonso M D, Penelas-Pérez G, Morata A, Morante J R, Andreu T 2016 ACS Appl. Mater. Interfaces 8 4076Google Scholar

    [100]

    Park Y, McDonald K J, Choi K S 2013 Chem. Soc. Rev. 42 2321Google Scholar

    [101]

    Liu R, ZhengZ, Spurgeon J, Yang X G 2014 Energy Environ. Sci. 7 2504Google Scholar

    [102]

    Xie J L, Guo C X, Yang P P, Wang X D, Liu D Y, Li C M 2017 Nano Energy 31 28Google Scholar

    [103]

    Jia Q X, Iwashina K, Kudo A 2012 Proc. Natl. Acad. Sci. U. S. A. 109 11564Google Scholar

    [104]

    Irwin M D, Buchholz D B, Hains A W, Chang R P H, Marks T J 2008 Proc. Natl. Acad. Sci. U. S. A. 105 2783Google Scholar

    [105]

    Huang W, Nechache R, Li S, Chaker M, Rosei F 2016 J. Am. Ceram. Soc. 99 226Google Scholar

    [106]

    Park J H, Seo J, Park S, Shin S S, Kim Y C, Jeon N J, Shin H W, Ahn T K, Noh J H, Yoon S C, Hwang C S, Seok S I 2015 Adv. Mater. 27 4013Google Scholar

    [107]

    Sun K, McDowell M T, Nielander A C, Hu S, Shaner M R, Yang F, Brunschwig B S, Lewis N S 2015 J. Phys. Chem. Lett. 6 592Google Scholar

    [108]

    Zhai P F, Yi Q H, Jian J, Wang H Y, Song P Y, Dong C, Lu X, Sun Y H, Zhao J, Dai X, Lou Y H, Yang H, Zou G F 2014 Chem. Commun. 50 1854Google Scholar

    [109]

    Ong S T, Keng P S, Lee W N, Ha S T, Hung Y T 2011 Water 3 157Google Scholar

    [110]

    Konstantinou I K, Albanis T A 2004 Appl. Catal. B 49 1Google Scholar

    [111]

    Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y B, Pan X Q, Gopalan V, Chen L Q, Schlom D G, Eom C B 2004 Science 306 1005Google Scholar

    [112]

    Vijatovic M M, Bobic ́J D, Stojanovic ́B A ́ 2008 Sci. Sinter. 40 155Google Scholar

    [113]

    Zhou T, Zha J W, Cui R Y, Fan B H, Yuan J K, Dang Z M 2011 ACS Appl. Mater. Interfaces 3 2184Google Scholar

    [114]

    Frey M H, Payne D A 1996 Phys. Rev. B 54 3158Google Scholar

    [115]

    Yuan G L, Chen J P, Xia H, Liu J M, Liu Z G 2013 Appl. Phys. Lett. 103 062903Google Scholar

    [116]

    Liu J W, Sun Y, Li Z H 2012 CrystEngComm 14 1473Google Scholar

    [117]

    Song W J, Salvador P A, Rohrer G S 2018 ACS Appl. Mater. Interfaces 10 41450Google Scholar

    [118]

    Huang X Y, Wang K Q, Wang Y Z, Wang B, Zhang L L, Gao F, Zhao Y, Feng W H, Zhang S Y, Liu P 2018 Appl. Catal. B 227 322Google Scholar

    [119]

    Yang L, Ravi S K, Nandakumar D K, Alzakia F I, Lu W H, Zhang Y X, Yang J C, Zhang Q, Zhang X P, Tan S C 2019 Adv. Mater. 31 1902963Google Scholar

    [120]

    Arney D, Watkins T, Maggard P A 2011 J. Am. Ceram. Soc. 94 1483Google Scholar

    [121]

    Reddy K H, Parida K 2013 ChemCatChem 5 3812Google Scholar

    [122]

    Hu Y X, Dong W, Zheng F G, Fang L, Shen M R 2014 Appl. Phys. Lett. 105 082903Google Scholar

    [123]

    Tabari T, Ebadi M, Singh D, Caglar B, Yagci M B 2018 J. Alloys Compd. 750 248Google Scholar

    [124]

    Liu Y, Ye S, Xie H C, Zhu J, Shi Q, Ta N, Chen R T, Gao Y Y, An H Y, Nie W, Jing H W, Fan F T, Li C 2020 Adv. Mater. 32 1906513Google Scholar

    [125]

    Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J, Schlom D G 2004 Nature 430 758Google Scholar

    [126]

    Singh S, Khare N 2017 Nano Energy 42 173Google Scholar

    [127]

    Li S, Zhang J M, Kibria M G, Mi Z T, Chaker M, Ma D L, Nechache R, Rosei F 2013 Chem. Commun. 49 5856Google Scholar

    [128]

    Gao L, Cui Y C, Wang J, Cavalli A, Standing A, Vu T T T, Verheijen M A, Haverkort J E M, Bakkers E P A M, Notten P H L 2014 Nano Lett. 14 3715Google Scholar

    [129]

    Ding Q P, Yuan Y P, Xiong X, Li R P, Huang H B, Li Z S, Yu T, Zou Z G, Yang S G 2008 J. Phys. Chem. C 112 18846Google Scholar

    [130]

    Choi J, Ryu S Y, Balcerski W, Lee T K, Hoffmann M R 2008 J. Mater. Chem. 18 2371Google Scholar

    [131]

    Zhang T T, Zhao K, Yu J G, Jin J, Qi Y, Li H Q, Hou X J, Liu G 2013 Nanoscale 5 8375Google Scholar

    [132]

    Yan L S, Zhang J, Zhou X M, Wu X X, Lan J Y, Wang Y S, Liu G, Yu J G, Zhi L J 2013 Int. J. Hydrogen Energy 38 3554Google Scholar

    [133]

    Lan J Y, Zhou X M, Liu G, Yu J G, Zhang J C, Zhi L J, Nie G J 2011 Nanoscale 3 5161Google Scholar

    [134]

    Zhang T T, Lei W Y, Liu P, Rodriguez J A, Yu J G, Qi Y, Liu G, Liu M H 2015 Chem. Sci. 6 4118Google Scholar

    [135]

    Khraisheh M, Khazndar A, Al-Ghouti M A 2015 Int. J. Energy Res. 39 1142Google Scholar

    [136]

    Park S, Lee C W, Kang M G, Kim S, Kim H J, Kwon J E, Park S Y, Kang C Y, Hong K S, Nam K T 2014 Phys. Chem. Chem. Phys. 16 10408Google Scholar

    [137]

    Li S, Zhang J M, Zhang B P, Huang W, Harnagea C, Nechache R, Zhu L F, Zhang S W, Lin Y H, Ni Liang, Sang Y H, Liu H, Rosei F 2017 Nano Energy 35 92Google Scholar

    [138]

    Wang Y J, Luo C T, Wang S H, Chen C, Yuan G L, Luo H S, Viehland D 2020 Adv. Electron. Mater. 6 1900949Google Scholar

    [139]

    Wu W Z, Wang L, Li Y L, Zhang F, Lin L, Niu S M, Chenet D, Zhang X, Hao Y F, Heinz T F, Hone J, Wang Z L 2014 Nature 514 470Google Scholar

    [140]

    Liang Z, Yan C F, Rtimi S, Bandara J 2019 Appl. Catal. B-Environ. 241 256Google Scholar

    [141]

    Li S, Zhao Z C, Zhao J Z, Zhang Z TLi X, Zhang J M 2020 ACS Appl. Nano Mater. 3 1063Google Scholar

    [142]

    Starr M B, Wang X D 2015 Nano Energy 14 296Google Scholar

    [143]

    Hong K S, Xu H F, Konishi H, Li X C 2012 J. Phys. Chem.C 116 13045Google Scholar

    [144]

    Lin H, Wu Z, Jia Y M, Li W J, Zheng R K, Luo H S 2014 Appl. Phys. Lett. 104 162907Google Scholar

    [145]

    Wu J M, Chang W E, Chang Y T, Chang C K 2016 Adv. Mater. 28 3718Google Scholar

    [146]

    Qian W Q, Wu Z, Jia Y M, Hong Y T, Xu X L, You H L, Zheng Y Q, Xia Y T 2017 Electrochem. Commun. 81 124Google Scholar

    [147]

    Wu M H, Lee J T, Chung Y J, Srinivaas M, Wu J M 2017 Nano Energy 40 369Google Scholar

    [148]

    Fu D S, Itoh M, Koshihara S Y 2008 Appl. Phys. Lett. 93 012904Google Scholar

    [149]

    Gao F, Cheng L H, Hong R Z, Liu J J, Yao Y H, Tian C S 2008 J. Mater. Sci.-Mater. Electron. 19 1228Google Scholar

    [150]

    Lin E Z, Wu J, Qin N, Yuan B W, Kang Z H, Bao D H 2019 Catal. Sci. Technol. 9 6863Google Scholar

    [151]

    Mushtaq F, Chen X Z, Hoop M, Torlakcik H, Pellicer E, Sort J, Gattinoni C, Nelson B J, Pane S 2018 iScience 4 236Google Scholar

    [152]

    Prier C K, Rankic D A, MacMillan D W C 2013 Chem. Rev. 113 5322Google Scholar

    [153]

    Romero N A, Nicewicz D A 2016 Chem. Rev. 116 10075Google Scholar

    [154]

    Wang C S, Dixneuf P H, Soulé J F 2018 Chem. Rev. 118 7532Google Scholar

    [155]

    Skubi K L, Blum T R, Yoon T P 2016 Chem. Rev. 116 10035Google Scholar

    [156]

    Kubota K, Pang Y D, Miura A, Ito H 2019 Science 366 1500Google Scholar

    [157]

    Tu W G, Zhou Y, Zou Z G 2014 Adv. Mater. 26 4607Google Scholar

    [158]

    Dimitrijevic N M, Vijayan B K, Poluektov O G, Rajh T, Gray K A, He H Y, Zapol P 2011 J. Am. Chem. Soc. 133 3964Google Scholar

    [159]

    Lee J, Sorescu D C, Deng X Y 2011 J. Am. Chem. Soc. 133 10066Google Scholar

    [160]

    Tan S J, Feng H, Ji Y F, Wang Y, Zhao J, Zhao A D, Wang B, Luo Y, Yang J L, Hou J G 2012 J. Am. Chem. Soc. 134 9978Google Scholar

    [161]

    Indrakanti V P, Kubicki J D, Schobert H H 2009 Energy Environ. Sci. 2 745Google Scholar

    [162]

    Indrakanti V P, Schobert H H, Kubicki J D 2009 Energy Fuels 23 5247Google Scholar

    [163]

    Gagliardi C J, Westlake B C, Kent C A, Paul J J, Papanikolas J M, Meyer T J 2010 Coord. Chem. Rev. 254 2459Google Scholar

    [164]

    Tu S C, Zhang Y H, Reshak A H, Auluck S S, Ye L Q, Han X P, Ma T Y, Huang H W 2019 Nano Energy 56 840Google Scholar

    [165]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S I 2013 Nat. Photonics 7 486Google Scholar

    [166]

    Gao W X, Brenan R, Hu Y, Wuttig M, Yuan G L, Quandt E, Ren S Q 2018 Mater. Today 21 771Google Scholar

    [167]

    Chu Y H 2017 npj Quantum Mater. 2 67Google Scholar

    [168]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, AlcocerM J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [169]

    Ding R, Zhang X L, Sun X. W 2017 Adv. Funct. Mater. 27 1702207Google Scholar

    [170]

    Leguy A M A, Frost J M, McMahon A P, Sakai V G, Kockelmann W, Law C, Li X, Foglia F, Walsh A, O’Regan B C, Nelson J, Cabral J T, Barnes P R F 2015 Nat. Commun. 6 7124Google Scholar

    [171]

    Kutes Y, Ye L H, Zhou Y Y, Pang S P, Huey B D, Padture N P 2014 J. Phys. Chem. Lett. 5 3335Google Scholar

    [172]

    Coll M, Gomez A, Mas-Marza E, Almora O, Garcia-Belmonte G, Campoy-Quiles M Bisquert J 2015 J. Phys. Chem. Lett. 6 1408Google Scholar

    [173]

    Kim H S, Kim S K, Kim B J, Shin K S, Gupta M K, Jung H S, S W Kim, Park N G 2015 J. Phys. Chem. Lett. 6 1729Google Scholar

    [174]

    Rakita Y, Bar-Elli O, Meirzadeh E, Kaslasi H, Peleg Y, Hodes G, Lubomirsky I, Oron D, Ehre D, Cahen D 2017 Proc.Natl Acad. Sci. U. S. A. 114 E5504Google Scholar

    [175]

    Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323Google Scholar

    [176]

    Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E, Ashraful I, Grätzel M, Han L 2015 Science 350 944Google Scholar

    [177]

    Kaltenbrunner M, Adam G, Głowacki E D, Drack M, Schwödiauer R, Leonat L, Apaydin D H, Groiss H, Scharber M C, White M S, Sariciftci N S, Bauer S 2015 Nat. Mater. 14 1032Google Scholar

    [178]

    Greeley J, Jaramillo T F, Bonde J, Chorkendorff I B, Nørskov J K 2006 Nat. Mater. 5 909Google Scholar

    [179]

    Jaramillo T F, Kristina P J, Bonde J, Nielsen J H, Horch S, Chorkendorff I 2007 Science 317 100Google Scholar

    [180]

    McKone J R, Sadtler B F, Werlang C A, Lexis N S, Gray H B 2013 ACS Catal. 3 166Google Scholar

    [181]

    Smith R D L, Prevot M S, Fagan R D, Zhang Z P, Sedach P A, Siu M K J, Trudel S, Berlinguette C P 2013 Science 340 60Google Scholar

    [182]

    Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater 5 1500963Google Scholar

    [183]

    Da Peimei M, Cha M Y, Sun L, Wu Y Z, Wang Z S, Zheng G F 2015 Nano Lett. 15 3452Google Scholar

    [184]

    Fu K, Huang J Z, Yao N N, Deng X L, Xu X J, Li L 2016 RSC Adv. 6 57695Google Scholar

    [185]

    Rehman S, Ullah R, Butt A M, Gohar N D 2009 J. Hazard. Mater. 170 560Google Scholar

    [186]

    Asahi R, Morikawa T, Okwaki T, Aoki K, Taga Y 2001 Science 293 269Google Scholar

  • [1] 郑旭, 李钊, 顾月良, 尹帅帅, 姜继超, 郭朴, 邱志勇, 李晓龙. BaTiO3单晶表面结构及表面液体pH值的影响. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240084
    [2] 袁国亮, 王琛皓, 唐文彬, 张睿, 陆旭兵. HfO2基铁电薄膜的结构、性能调控及典型器件应用. 物理学报, 2023, 72(9): 097703. doi: 10.7498/aps.72.20222221
    [3] 万新阳, 章烨辉, 陆帅华, 吴艺蕾, 周跫桦, 王金兰. 机器学习加速搜寻新型双钙钛矿氧化物光催化剂. 物理学报, 2022, 71(17): 177101. doi: 10.7498/aps.71.20220601
    [4] 张利胜. 基于金纳米阵列表面等离子体驱动的光催化特性. 物理学报, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [5] 裴明辉, 田瑜, 张金星. 钙钛矿型铁电氧化物表面结构与功能的控制及其潜在应用. 物理学报, 2020, 69(21): 217709. doi: 10.7498/aps.69.20200884
    [6] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展. 物理学报, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [7] 邵梓桥, 毕恒昌, 谢骁, 万能, 孙立涛. 三氧化钨/氧化银复合材料的水热法合成及其光催化降解性能研究. 物理学报, 2018, 67(16): 167802. doi: 10.7498/aps.67.20180663
    [8] 王逸飞, 李晓薇. 石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算. 物理学报, 2018, 67(11): 116301. doi: 10.7498/aps.67.20172220
    [9] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟. 铁电材料光催化活性的研究进展. 物理学报, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [10] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [11] 李佩欣, 冯铭扬, 吴彩平, 李少波, 侯磊田, 马嘉赛, 殷春浩. 基于电子顺磁共振的锌卟啉敏化TiO2光催化性机理的研究. 物理学报, 2015, 64(13): 137601. doi: 10.7498/aps.64.137601
    [12] 赵娟, 胡慧芳, 曾亚萍, 程彩萍. 花状硫化铜级次纳米结构的制备及可见光催化活性研究. 物理学报, 2013, 62(15): 158104. doi: 10.7498/aps.62.158104
    [13] 姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德. 基于GaAs/InAs-GaAs/ZnSe量子点太阳电池结构的优化. 物理学报, 2012, 61(13): 138801. doi: 10.7498/aps.61.138801
    [14] 张勇, 刘亚莉, 焦威, 陈林, 熊祖洪. 有机发光器件的磁电导效应. 物理学报, 2012, 61(11): 117106. doi: 10.7498/aps.61.117106
    [15] 陈钊, 丁竑瑞, 陈伟华, 李艳, 张国义, 鲁安怀, 胡晓东. 太阳能电池在微生物燃料电池中的光电催化性能研究. 物理学报, 2012, 61(24): 248801. doi: 10.7498/aps.61.248801
    [16] 梁培, 王乐, 熊斯雨, 董前民, 李晓艳. Mo-X(B, C, N, O, F)共掺杂TiO2体系的光催化协同效应研究. 物理学报, 2012, 61(5): 053101. doi: 10.7498/aps.61.053101
    [17] 马海敏, 洪亮, 尹伊, 许坚, 叶辉. 超亲水性SiO2-TiO2纳米颗粒阵列结构的制备与性能研究. 物理学报, 2011, 60(9): 098105. doi: 10.7498/aps.60.098105
    [18] 陈应天, 何祚庥. 强辐射催化法提纯多晶硅. 物理学报, 2011, 60(7): 078104. doi: 10.7498/aps.60.078104
    [19] 郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖. 掺杂PEDOT ∶PSS对聚合物太阳能电池性能影响的研究. 物理学报, 2011, 60(11): 117106. doi: 10.7498/aps.60.117106
    [20] 吴伟才, 周印华, 温善鹏, 韩 靓, 田文晶. 溶剂效应对聚苯撑乙烯掺杂苝二酰亚胺太阳电池性能的影响. 物理学报, 2007, 56(8): 5003-5008. doi: 10.7498/aps.56.5003
计量
  • 文章访问数:  27890
  • PDF下载量:  1004
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-25
  • 修回日期:  2020-04-06
  • 刊出日期:  2020-06-20

/

返回文章
返回