搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多轴差分吸收光谱技术测量青岛市大气水汽垂直柱浓度及垂直分布

任红梅 李昂 胡肇焜 黄业园 徐晋 谢品华 钟鸿雁 李晓梅

引用本文:
Citation:

基于多轴差分吸收光谱技术测量青岛市大气水汽垂直柱浓度及垂直分布

任红梅, 李昂, 胡肇焜, 黄业园, 徐晋, 谢品华, 钟鸿雁, 李晓梅

Measurement of atmospheric water vapor vertical column concentration and vertical distribution in Qingdao using multi-axis differential optical absorption spectroscopy

Ren Hong-Mei, Li Ang, Hu Zhao-Kun, Huang Ye-Yuan, Xu Jin, Xie Pin-Hua, Zhong Hong-Yan, Li Xiao-Mei
PDF
HTML
导出引用
  • 本文研究了多轴差分吸收光谱技术(MAX-DOAS)在可见蓝光波段(434.0—451.5 nm)对大气水汽垂直柱浓度和垂直廓线的反演方法. 首先, 针对水汽吸收峰较窄且较密的问题, 采用和仪器狭缝函数卷积的方法获取适用于MAX-DOAS的水汽吸收参考截面, 并采用修正系数法校正了水汽饱和吸收效应在此波段对反演的影响. 其次, 研究了非线性最优估算法痕量气体廓线反演算法(PriAM算法)中气溶胶状态和先验廓线的线型对水汽反演结果的影响. 结果表明, 气溶胶线型变化对水汽廓线反演结果的影响可忽略, 而高气溶胶状态会使反演结果差异变大, 但均在廓线反演总误差范围内, 这表明, PriAM算法对水汽廓线反演仍具有适用性. 采用该方法在青岛市鳌山区域站开展连续观测实验, 并将观测的水汽垂直柱浓度结果和欧洲中期天气预报中心日均值数据对比, R2 = 0.93; 将反演的水汽廓线近地面浓度与欧洲中期天气预报中心和怀俄明大学探空数据对比, R2分别大于0.70和0.66, 结果表明了PriAM算法对大气水汽廓线反演的准确性较高. 最后, 分析了青岛市水汽垂直分布特征: 青岛市水汽主要分布在1.5 km以下.
    The method of retrieving the vertical column density (VCD) and the atmospheric vertical profile of water vapor in visible blue band (434.0–451.5 nm) were studied by using the multi-axis differential optical absorption spectroscopy (MAX-DOAS). First, the method of retrieving the VCD of water vapor was studied. Owing the the fact that the water vapor absorption cross section is of high resolution and it cannot be effectively measured by MAX-DOAS, a convolved cross section with the instrument slit function was used. In addition, the correction factor for water vapor saturation absorption was also used to obtain the true VCD. Second, the water vapor profile retrieved by applying the nonlinear optimal estimation of the trace gas retrieval method (PriAM) was studied, including the effects of aerosol state and the priori profile on the water vapor retrieval. Influence on the water vapor retrieval from the aerosol prior profile linear changes was unapparent. High aerosol state has a significant influence on the water vapor profile retrieval and it was still within the total error tolerance. This indicates that the PriAM is applicable in the water vapor profile retrieval. Using this method, a continuous observation experiment was carried out at the MAX-DOAS Aoshan regional station in Qingdao. The retrieved water vapor VCD results were compared with the daily average data of the European Centre for Medium-Range Weather Forecasts (ECMWF), and the R2 is 0.93. The comparison of the near-surface water vapor concentration of MAX-DOAS retrieval with the ECMWF and sounding data of the University of Wyoming shows that R2 is larger than 0.70 and 0.66, respectively. The two comparison results demonstrate that PriAM can retrieve the atmospheric water vapor VCD and profile accurately. The vertical distribution characteristics of water vapor in Qingdao was analyzed, and the profile results show that the concentration of water vapor in Qingdao was distributed mainly under 1.5 km in height.
      通信作者: 李昂, angli@aiofm.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFC0213201)、国家自然科学基金(批准号: 41775029)和上海市科委科技项目(批准号: 17DZ1203102)资助的课题
      Corresponding author: Li Ang, angli@aiofm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFC0213201), the National Natural Science Foundation of China (Grant No. 41775029), and the Science-Technology Project of Science and Technology Commission of Shanghai Municipality, China (Grant No. 17DZ1203102)
    [1]

    Wagner T, Andreae M O, Beirle S, Doerner S, Mies K, Shaiganfar R 2013 Atmos. Meas. Tech. 6 131Google Scholar

    [2]

    刘进, 司福祺, 周海金, 赵敏杰, 窦科, 刘文清 2013 光学学报 33 0801002Google Scholar

    Liu J, Si F Q, Zhou H J, Zhao M J, Dou K, Liu W Q 2013 Acta Opt. Sin. 33 0801002Google Scholar

    [3]

    Kiemle C, Brewer W A, Ehret G, Hardesty R M, Fix A, Senff C, Wirth M, Poberaj G, LeMone M A 2007 J. Atmos. Oceanic. Technol. 24 627Google Scholar

    [4]

    Noel S, Mieruch S, Bovensmann H, Burrows J P 2008 Atmos. Chem. Phys. 8 1519Google Scholar

    [5]

    Noel S, Buchwitz M, Bovensmann H, Burrows J P 2005 Atmos. Chem. Phys. 5 1835

    [6]

    Chan K L, Valks P, Slijkhuis S, Köhler C, Loyola D 2020 Atmos. Meas. Tech. 13 4169Google Scholar

    [7]

    Vey S, Dietrich R, Johnsen K P, Miao J, Heygster G 2004 J. Meteorol. Soc. Jpn. 82 259Google Scholar

    [8]

    Borger C, Beirle S, Dörner S, Sihler H, Wagner T 2020 Atmos. Meas. Tech. 13 2751Google Scholar

    [9]

    Filges A, Gerbig C, Chen H L, Franke H, Klaus C, Jordan A 2015 Tellus B 67 27989Google Scholar

    [10]

    Platt U, Stutz J 2008 Differential Optical Absorption Spectroscopy (Berlin: Springer-Verlag Heidelberg) pp449–453

    [11]

    王杨, 李昂, 谢品华, 陈浩, 牟福生, 徐晋, 吴丰成, 曾议, 刘建国, 刘文清 2013 物理学报 62 200705Google Scholar

    Wang Y, Li A, Xie P H, Chen H, Mou F S, Xu J, Wu F C, Zeng Y, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 200705Google Scholar

    [12]

    王杨, 李昂, 谢品华, 陈浩, 徐晋, 吴丰成, 刘建国, 刘文清 2013 物理学报 62 180705Google Scholar

    Wang Y, Li A, Xie P H, Chen H, Xu J, Wu F C, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 180705Google Scholar

    [13]

    田鑫, 徐晋, 谢品华, 李昂, 胡肇焜, 李晓梅, 任博, 吴子扬 2019 光谱学与光谱分析 39 2325Google Scholar

    Tian X, Xu J, Xie P H, Li A, Hu Z H, Li X M, Ren B, Wu Z Y 2019 Spectrosc. Spect. Anal. 39 2325Google Scholar

    [14]

    Wang Y, Dorner S, Donner S, Bohnke S, De Smedt I, Dickerson R R, Dong Z P, He H, Li Z Q, Li Z Q, Li D H, Liu D, Ren X R, Theys N, Wang Y Y, Wang Y, Wang Z Z, Xu H, Xu J W, Wagner T 2019 Atmos. Chem. Phys. 19 5417Google Scholar

    [15]

    Irie H, Takashima H, Kanaya Y, Boersma K F, Gast L, Wittrock F, Brunner D, Zhou Y, Van Roozendael M 2011 Atmos. Meas. Tech. 4 1027Google Scholar

    [16]

    Lampel J, Pohler D, Tschritter J, Friess U, Platt U 2015 Atmos. Meas. Tech. 8 4329Google Scholar

    [17]

    Lampel J, Pohler D, Polyansky O L, Kyuberis A A, Zobov N F, Tennyson J, Lodi L, Friess U, Wang Y, Beirle S, Platt U, Wagner T 2017 Atmos. Chem. Phys. 17 1271Google Scholar

    [18]

    周海金, 刘文清, 司福祺, 窦科 2013 物理学报 62 044216Google Scholar

    Zhou H J, Liu W Q, Si F Q, Dou K 2013 Acta Phys. Sin. 62 044216Google Scholar

    [19]

    杨雷, 李昂, 谢品华, 胡肇焜, 梁帅西, 张英华, 黄业园 2019 光谱学与光谱分析 5 1398Google Scholar

    Yang L, Li A, Xie P H, Hu Z K, Liang S X, Zhan Y H, Huang Y Y 2019 Spectrosc. Spect. Anal. 5 1398Google Scholar

    [20]

    Li A, Xie P H, Liu C, Liu J G, Liu W Q 2007 Chin. Phys. Lett. 24 2859Google Scholar

    [21]

    Wang Y, Beirle S, Lampel J, Koukouli M, De Smedt I, Theys N, Li A, Wu D X, Xie P H, Liu C, Van Roozendael M, Stavrakou T, Muller J F, Wagner T 2017 Atmos. Chem. Phys. 17 5007Google Scholar

    [22]

    Tian X, Xie P H, Xu J, Wang Y, Li A, Wu F C, Hu Z K, Liu C, Zhang Q 2018 Atmos. Chem. Phys. 19 3375Google Scholar

    [23]

    王杨, Wagner T, 李昂, 谢品华, 伍德侠, 陈浩, 牟福生, 张杰, 徐晋, 吴丰成, 刘建国, 刘文清, 曾议 2014 物理学报 63 110708Google Scholar

    Wang Y, Wagner T, Li A, Xie P H, Wu D X, Chen H, Mou F S, Zhan J, Xu J, Wu F C, Liu J G, Liu W Q, Zeng Y 2014 Acta Phys. Sin. 63 110708Google Scholar

    [24]

    Rothman L S, Gordon I E, Barbe A, et al. 2009 J. Quant. Spectrosc. Radiat. Transfer 110 533Google Scholar

    [25]

    Rothman L S, Gordon I E, Babikov Y, et al. 2013 J. Quant. Spectrosc. Radiat. Transfer 130 4Google Scholar

    [26]

    Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010 J. Quant. Spectrosc. Radiat. Transfer 111 2139Google Scholar

    [27]

    Polyansky O L, Kyuberis A A, Lodi L, Tennyson J, Ovsyannikov R I, Zobov N 2016 Mon. Not. R. Astron. Soc. 466 1363Google Scholar

    [28]

    Wagner T, Heland J, Zoger M, Platt U 2003 Atmos. Chem. Phys. 3 651Google Scholar

    [29]

    Wenig M, Jahne B, Platt U 2005 Appl. Opt. 44 3246Google Scholar

    [30]

    Wagner T, Beirle S, Deutschmann T 2009 Atmos. Meas. Tech. 2 113Google Scholar

    [31]

    Vandaele A C, Hermans C, Simon P C, Carleer M, Colin R, Fally S, Mérienne M F, Jenouvrier A, Coquart B 1998 J. Quant. Spectrosc. Ra. 59 171Google Scholar

    [32]

    Serdyuchenko A, Gorshelev V, Weber M, Chehade W, Burrows J P 2014 Atmos. Meas. Tech. 7 625Google Scholar

    [33]

    Thalman R M, Volkamer R 2013 Phys. Chem. Chem. Phys. 15 15371Google Scholar

    [34]

    Kraus S 2006 Ph. D. Dissertation (Mannheim: University of Mannheim)

    [35]

    张佳华 2017 硕士学位论文 (武汉: 武汉大学)

    Zhang J H 2017 M. S. Thesis (Wuhan: Wuhan University) (in Chinese)

  • 图 1  PriAM算法反演气溶胶及水汽流程图

    Fig. 1.  Flow chart of aerosol and water vapor retrieval by PriAM algorithm.

    图 3  MAX-DOAS望远镜观测视场图

    Fig. 3.  MAX-DOAS telescope observation field diagram.

    图 4  MAX-DOAS观测原理图

    Fig. 4.  Schematic diagram of MAX-DOAS observation.

    图 5  水汽有效吸收参考截面获取过程 (a) HITEMP 2010水汽高分辨率吸收光谱; (b) 狭缝函数; (c) 水汽有效吸收参考截面

    Fig. 5.  Obtaining process of reference cross section for effective absorption of water vapor: (a) HITEMP 2010 high-resolution water vapor absorption spectrum; (b) slit function; (c) reference cross section for effective absorption of water vapor.

    图 6  不同数据库下水汽有效吸收截面对比 (a) 4种数据库下水汽有效吸收参考截面; (b) 20°仰角下DOAS拟合残差对比

    Fig. 6.  Comparison of effective water vapor absorption cross sections under different databases: (a) Reference cross sections of effective water vapor absorption under four databases; (b) comparison of DOAS fitted residuals at 20° elevation.

    图 7  在蓝光波段水汽饱和吸收对OD的影响 (a) 不同SCD下的OD差别; (b) 最大吸收峰442.6 nm处OD饱和校正前后的差别

    Fig. 7.  The effect of water vapor saturation absorption on the OD in the blue band: (a) OD difference under different SCD; (b) the difference before and after OD saturation correction at the maximum absorption peak at 442.6 nm.

    图 8  DOAS拟合反演示例 (a) Residual; (b) H2O; (c) NO2; (d) O3

    Fig. 8.  DOAS fitting retrieval example: (a) Residual; (b) H2O; (c) NO2; (d) O3.

    图 9  MAX-DOAS测量数据和ECMWF数据日均值对比

    Fig. 9.  Comparison of MAX-DOAS measurement data and ECMWF data daily average.

    图 10  MAX-DOAS数据与ECMWF数据相关性分析

    Fig. 10.  Correlation analysis of MAX-DOAS data and ECMWF data.

    图 11  气溶胶状态及线型对水汽廓线反演结果的影响 (a) 5种气溶胶先验廓线; (b) 3月6日5种气溶胶先验廓线下反演水汽结果及误差; (c) 3月22日5种气溶胶先验廓线下反演水汽结果及误差; (d) 指数型水汽先验廓线; (e) 3月6日平均核的包络线; (f) 3月22日平均核的包络线

    Fig. 11.  Effects of aerosol state and line type on the retrieval results of water vapor profile: (a) Five aerosol prior profiles; (b) the results and errors of water vapor retrieval under the five aerosol prior profiles on March 6; (c) the results and errors of water vapor retrieval under the five aerosol prior profiles on March 22; (d) the exponential water vapor prior profile; (e) the envelope of the average kernel on March 6; (f) the envelope of the average kernel on March 22.

    图 12  MAX-DOAS数据与ECMWF及探空数据对比

    Fig. 12.  MAX-DOAS data compared with ECMWF and sounding data.

    图 13  MAX-DOAS不同高度廓线数据与ECMWF和探空数据的相关性分析

    Fig. 13.  Correlation analysis of MAX-DOAS profile data at different heights with ECMWF and sounding data.

    图 14  基于MAX-DOAS反演的水汽0−4 km垂直分布廓线

    Fig. 14.  Vertical distribution profile of water vapor 0−4 km based on MAX-DOAS retrieval.

    表 1  MAX-DOAS参数设置

    Table 1.  Parameter settings of MAX-DOAS.

    Spectrometer nameAvantesLongitude120.67° E
    Spectral range/nm285–453Latitude36.35° N
    FWHM/nm0.6Measuring time4∶00–22∶00 LT
    Temperature control/℃25Azimuth
    CityQingdaoElevation1°, 2°, 3°, 4°, 5°, 6°, 8°, 10°, 20°, 30°, 90°
    下载: 导出CSV

    表 2  DOAS拟合参数设置

    Table 2.  Parameter settings of DOAS fitting.

    ParameterSourceFitting spectral range 434.0—451.5 nm
    NO2298 K, 220 K[31]
    O3223 K, 293 K[32]
    O4293 K[33]
    H2O296 K[26]
    RingRing spectrum calculated from DOASIS[34]
    and additional ring multiplied by $ {\lambda }^{-4} $ [30]
    Polynomial degree5
    下载: 导出CSV
  • [1]

    Wagner T, Andreae M O, Beirle S, Doerner S, Mies K, Shaiganfar R 2013 Atmos. Meas. Tech. 6 131Google Scholar

    [2]

    刘进, 司福祺, 周海金, 赵敏杰, 窦科, 刘文清 2013 光学学报 33 0801002Google Scholar

    Liu J, Si F Q, Zhou H J, Zhao M J, Dou K, Liu W Q 2013 Acta Opt. Sin. 33 0801002Google Scholar

    [3]

    Kiemle C, Brewer W A, Ehret G, Hardesty R M, Fix A, Senff C, Wirth M, Poberaj G, LeMone M A 2007 J. Atmos. Oceanic. Technol. 24 627Google Scholar

    [4]

    Noel S, Mieruch S, Bovensmann H, Burrows J P 2008 Atmos. Chem. Phys. 8 1519Google Scholar

    [5]

    Noel S, Buchwitz M, Bovensmann H, Burrows J P 2005 Atmos. Chem. Phys. 5 1835

    [6]

    Chan K L, Valks P, Slijkhuis S, Köhler C, Loyola D 2020 Atmos. Meas. Tech. 13 4169Google Scholar

    [7]

    Vey S, Dietrich R, Johnsen K P, Miao J, Heygster G 2004 J. Meteorol. Soc. Jpn. 82 259Google Scholar

    [8]

    Borger C, Beirle S, Dörner S, Sihler H, Wagner T 2020 Atmos. Meas. Tech. 13 2751Google Scholar

    [9]

    Filges A, Gerbig C, Chen H L, Franke H, Klaus C, Jordan A 2015 Tellus B 67 27989Google Scholar

    [10]

    Platt U, Stutz J 2008 Differential Optical Absorption Spectroscopy (Berlin: Springer-Verlag Heidelberg) pp449–453

    [11]

    王杨, 李昂, 谢品华, 陈浩, 牟福生, 徐晋, 吴丰成, 曾议, 刘建国, 刘文清 2013 物理学报 62 200705Google Scholar

    Wang Y, Li A, Xie P H, Chen H, Mou F S, Xu J, Wu F C, Zeng Y, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 200705Google Scholar

    [12]

    王杨, 李昂, 谢品华, 陈浩, 徐晋, 吴丰成, 刘建国, 刘文清 2013 物理学报 62 180705Google Scholar

    Wang Y, Li A, Xie P H, Chen H, Xu J, Wu F C, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 180705Google Scholar

    [13]

    田鑫, 徐晋, 谢品华, 李昂, 胡肇焜, 李晓梅, 任博, 吴子扬 2019 光谱学与光谱分析 39 2325Google Scholar

    Tian X, Xu J, Xie P H, Li A, Hu Z H, Li X M, Ren B, Wu Z Y 2019 Spectrosc. Spect. Anal. 39 2325Google Scholar

    [14]

    Wang Y, Dorner S, Donner S, Bohnke S, De Smedt I, Dickerson R R, Dong Z P, He H, Li Z Q, Li Z Q, Li D H, Liu D, Ren X R, Theys N, Wang Y Y, Wang Y, Wang Z Z, Xu H, Xu J W, Wagner T 2019 Atmos. Chem. Phys. 19 5417Google Scholar

    [15]

    Irie H, Takashima H, Kanaya Y, Boersma K F, Gast L, Wittrock F, Brunner D, Zhou Y, Van Roozendael M 2011 Atmos. Meas. Tech. 4 1027Google Scholar

    [16]

    Lampel J, Pohler D, Tschritter J, Friess U, Platt U 2015 Atmos. Meas. Tech. 8 4329Google Scholar

    [17]

    Lampel J, Pohler D, Polyansky O L, Kyuberis A A, Zobov N F, Tennyson J, Lodi L, Friess U, Wang Y, Beirle S, Platt U, Wagner T 2017 Atmos. Chem. Phys. 17 1271Google Scholar

    [18]

    周海金, 刘文清, 司福祺, 窦科 2013 物理学报 62 044216Google Scholar

    Zhou H J, Liu W Q, Si F Q, Dou K 2013 Acta Phys. Sin. 62 044216Google Scholar

    [19]

    杨雷, 李昂, 谢品华, 胡肇焜, 梁帅西, 张英华, 黄业园 2019 光谱学与光谱分析 5 1398Google Scholar

    Yang L, Li A, Xie P H, Hu Z K, Liang S X, Zhan Y H, Huang Y Y 2019 Spectrosc. Spect. Anal. 5 1398Google Scholar

    [20]

    Li A, Xie P H, Liu C, Liu J G, Liu W Q 2007 Chin. Phys. Lett. 24 2859Google Scholar

    [21]

    Wang Y, Beirle S, Lampel J, Koukouli M, De Smedt I, Theys N, Li A, Wu D X, Xie P H, Liu C, Van Roozendael M, Stavrakou T, Muller J F, Wagner T 2017 Atmos. Chem. Phys. 17 5007Google Scholar

    [22]

    Tian X, Xie P H, Xu J, Wang Y, Li A, Wu F C, Hu Z K, Liu C, Zhang Q 2018 Atmos. Chem. Phys. 19 3375Google Scholar

    [23]

    王杨, Wagner T, 李昂, 谢品华, 伍德侠, 陈浩, 牟福生, 张杰, 徐晋, 吴丰成, 刘建国, 刘文清, 曾议 2014 物理学报 63 110708Google Scholar

    Wang Y, Wagner T, Li A, Xie P H, Wu D X, Chen H, Mou F S, Zhan J, Xu J, Wu F C, Liu J G, Liu W Q, Zeng Y 2014 Acta Phys. Sin. 63 110708Google Scholar

    [24]

    Rothman L S, Gordon I E, Barbe A, et al. 2009 J. Quant. Spectrosc. Radiat. Transfer 110 533Google Scholar

    [25]

    Rothman L S, Gordon I E, Babikov Y, et al. 2013 J. Quant. Spectrosc. Radiat. Transfer 130 4Google Scholar

    [26]

    Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010 J. Quant. Spectrosc. Radiat. Transfer 111 2139Google Scholar

    [27]

    Polyansky O L, Kyuberis A A, Lodi L, Tennyson J, Ovsyannikov R I, Zobov N 2016 Mon. Not. R. Astron. Soc. 466 1363Google Scholar

    [28]

    Wagner T, Heland J, Zoger M, Platt U 2003 Atmos. Chem. Phys. 3 651Google Scholar

    [29]

    Wenig M, Jahne B, Platt U 2005 Appl. Opt. 44 3246Google Scholar

    [30]

    Wagner T, Beirle S, Deutschmann T 2009 Atmos. Meas. Tech. 2 113Google Scholar

    [31]

    Vandaele A C, Hermans C, Simon P C, Carleer M, Colin R, Fally S, Mérienne M F, Jenouvrier A, Coquart B 1998 J. Quant. Spectrosc. Ra. 59 171Google Scholar

    [32]

    Serdyuchenko A, Gorshelev V, Weber M, Chehade W, Burrows J P 2014 Atmos. Meas. Tech. 7 625Google Scholar

    [33]

    Thalman R M, Volkamer R 2013 Phys. Chem. Chem. Phys. 15 15371Google Scholar

    [34]

    Kraus S 2006 Ph. D. Dissertation (Mannheim: University of Mannheim)

    [35]

    张佳华 2017 硕士学位论文 (武汉: 武汉大学)

    Zhang J H 2017 M. S. Thesis (Wuhan: Wuhan University) (in Chinese)

  • [1] 薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图. 基于激光外差探测的大气N2O吸收光谱测量与廓线反演. 物理学报, 2021, 70(21): 217801. doi: 10.7498/aps.70.20210710
    [2] 曾祥昱, 王薇, 刘诚, 单昌功, 谢宇, 胡启后, 孙友文, PolyakovAlexander Viktorovich. 利用地基高分辨率傅里叶变换红外光谱技术探测大气氟氯烃气体CCl2F2的时空变化特征. 物理学报, 2021, 70(20): 200201. doi: 10.7498/aps.70.20210640
    [3] 曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明. 基于可调谐二极管激光吸收光谱技术的密闭玻璃容器中水汽浓度及压力的探测. 物理学报, 2016, 65(8): 084202. doi: 10.7498/aps.65.084202
    [4] 刘进, 邹莹, 司福祺, 周海金, 窦科, 王煜, 刘文清. 基于差分吸收光谱技术的大气痕量气体二维观测方法. 物理学报, 2015, 64(16): 164209. doi: 10.7498/aps.64.164209
    [5] 葛烨, 舒嵘, 胡以华, 刘豪. 大气水汽探测地基差分吸收激光雷达系统设计与性能仿真. 物理学报, 2014, 63(20): 204301. doi: 10.7498/aps.63.204301
    [6] 程巳阳, 徐亮, 高闽光, 金岭, 李胜, 冯书香, 刘建国, 刘文清. 直射太阳光红外吸收光谱技术遥测大气中二氧化碳柱浓度. 物理学报, 2013, 62(12): 124206. doi: 10.7498/aps.62.124206
    [7] 王婷, 王普才, 余环, 张兴赢, 周斌, 司福祺, 王珊珊, 白文广, 周海金, 赵恒. 多轴差分吸收光谱仪反演大气NO2的比对试验. 物理学报, 2013, 62(5): 054206. doi: 10.7498/aps.62.054206
    [8] 孙友文, 谢品华, 徐晋, 周海金, 刘诚, 王杨, 刘文清, 司福祺, 曾议. 采用加权函数修正的差分光学吸收光谱反演环境大气中的CO2垂直柱浓度. 物理学报, 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [9] 王杨, 李昂, 谢品华, 陈浩, 牟福生, 徐晋, 吴丰成, 曾议, 刘建国, 刘文清. 多轴差分吸收光谱技术测量NO2对流层垂直分布及垂直柱浓度. 物理学报, 2013, 62(20): 200705. doi: 10.7498/aps.62.200705
    [10] 王杨, 李昂, 谢品华, 陈浩, 徐晋, 吴丰成, 刘建国, 刘文清. 多轴差分吸收光谱技术反演气溶胶消光系数垂直廓线. 物理学报, 2013, 62(18): 180705. doi: 10.7498/aps.62.180705
    [11] 周海金, 刘文清, 司福祺, 窦科. 多轴差分吸收光谱技术测量近地面NO2体积混合比浓度方法研究. 物理学报, 2013, 62(4): 044216. doi: 10.7498/aps.62.044216
    [12] 徐晋, 谢品华, 司福祺, 李昂, 周海金, 吴丰成, 王杨, 刘建国, 刘文清. 基于机载平台的NO2 垂直廓线反演灵敏度研究. 物理学报, 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [13] 王杨, 谢品华, 李昂, 曾议, 徐晋, 司福祺. 直射太阳光差分吸收光谱法测量合肥NO2 整层柱浓度. 物理学报, 2012, 61(11): 114209. doi: 10.7498/aps.61.114209
    [14] 孙友文, 刘文清, 谢品华, 陈嘉乐, 曾议, 徐晋, 李昂, 司福祺, 李先欣. 红外差分光学吸收光谱技术测量环境大气中的水汽. 物理学报, 2012, 61(14): 140705. doi: 10.7498/aps.61.140705
    [15] 程胡华, 钟中, 岑瑾, 邓少格. 估算大气重力波参数的垂直扰动廓线获取新方法. 物理学报, 2012, 61(18): 189201. doi: 10.7498/aps.61.189201
    [16] 徐晋, 谢品华, 司福祺, 李昂, 刘文清. 机载多轴差分吸收光谱技术获取对流层NO2垂直柱浓度的研究. 物理学报, 2012, 61(2): 024204. doi: 10.7498/aps.61.024204
    [17] 赵小峰, 黄思训. 垂直天线阵观测信息反演大气折射率廓线. 物理学报, 2011, 60(11): 119203. doi: 10.7498/aps.60.119203
    [18] 司福祺, 谢品华, 窦科, 詹铠, 刘宇, 徐晋, 刘文清. 被动多轴差分吸收光谱大气气溶胶光学厚度监测方法研究. 物理学报, 2010, 59(4): 2867-2872. doi: 10.7498/aps.59.2867
    [19] 司福祺, 刘建国, 谢品华, 张玉钧, 窦 科, 刘文清. 差分吸收光谱技术监测大气气溶胶粒谱分布. 物理学报, 2006, 55(6): 3165-3169. doi: 10.7498/aps.55.3165
    [20] 周斌, 刘文清, 齐峰, 李振壁, 崔延军. 差分吸收光谱法测量大气污染的浓度反演方法研究. 物理学报, 2001, 50(9): 1818-1823. doi: 10.7498/aps.50.1818
计量
  • 文章访问数:  6138
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-22
  • 修回日期:  2020-06-15
  • 上网日期:  2020-10-10
  • 刊出日期:  2020-10-20

/

返回文章
返回